Moleküle brillant beleuchtet

Neues aus der Forschung

Meldung vom 23.04.2018

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.


180424-0118_medium.jpg
 
Künstlerische Ansicht einer Frequenzumwandlung vom Nahinfrarot ins mittlere Infrarot durch einen nichtlinearen Kristall. Kurzwellige Strahlung tritt in einen Kristall ein und versetzt die Elektronen im Kristall in Schwingung. Die Elektronen können der Frequenz des Lichtfeldes nicht vollständig folgen und oszillieren bei niedrigeren Frequenzen, die im mittleren Infrarotereich liegen. So wird die langwellige Strahlung erzeugt.
Marcus Seidel, Xiao Xiao, Syed A. Hussain, Gunnar Arisholm, Alexander Hartung, Kevin T. Zawilski, Peter G. Schunemann, Florian Habel, Michael Trubetskov, Vladimir Pervak, Oleg Pronin, Ferenc Krausz
Multi-watt, multi-octave, mid-infrared femtosecond source
Science Advances 4
DOI: 10.1126/sciadv.aaq1526


Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt ist. Mit brillantem Infrarotlicht wollen Wissenschaftler des Labors für Attosekundenphysik (LAP), der Ludwig-Maximilians-Universität (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) diese molekularen Krankheitsindikatoren genauer erforschen, um beispielsweise die Früherkennung von Krebs zu erleichtern. Den Forschern ist es nun gelungen eine leistungsstarke Femtosekunden-Lichtquelle im Wellenlängenbereich von 1,6 bis 10,2 Mikrometer zu entwickeln. Von dieser Technologie versprechen sie sich auch sehr schwach konzentrierte Moleküle im menschlichen Blut oder Atem aufzuspüren.

Oft genügt ein gezielter Blick um zu erkennen, ob Menschen gesund oder krank sind. Allerdings sind Erkrankungen, die das menschliche Auge wahrnimmt, oft schon weit fortgeschritten. Mit Laserlicht wollen Wissenschaftler Krankheiten bereits im Frühstadium erkennen, sodass sie entsprechend frühzeitig auch behandelt werden können. Dazu ist aber ein sehr genauer Blick nötig, ein Blick in die Welt der Moleküle. Diese reagieren sehr spezifisch auf bestimmte Wellenlängen im mittleren Infrarotbereich des Lichts und hinterlassen damit beim Durchleuchten einer Probe, zum Beispiel Blut oder Atemluft, sogenannte molekulare Fingerabdrücke. Mit einer Lichtquelle, die einen breiten Bereich des Infrarotlichts abdeckt, kann man viele Molekülarten gleichzeitig untersuchen. Befinden sich in der Probe Moleküle, die als Krankheitsindikatoren dienen, so hinterlassen auch sie ihren Fingerabdruck im Infrarotlicht.

Eine solche breitbandige Lichtquelle im Wellenlängenspektrum zwischen 1,6 und 10,2 Mikrometer haben die LAP-Physiker entwickelt. Der Laser produziert durch seine Leistung im Watt-Bereich und seine gute Fokussierbarkeit höchst brillantes Licht. Damit soll das Erkennen besonders schwach konzentrierter Moleküle ermöglicht werden. Zudem produziert der Laser Pulse im Femtosekundenbereich (Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde). Das ermöglicht zeitaufgelöste Messungen sowie rauscharme und präzise Messtechniken.

Infrarot-Spektroskopie basiert aktuell meist auf der Nutzung von inkohärentem Licht. Auch wenn sich damit problemlos der mittlere Infrarotbereich abdecken lässt, verhindert die geringe Brillanz der inkohärenten Lichtquellen das Erkennen sehr schwacher molekularer Fingerabdrücke. Als Alternative diente bisher die Synchrotronstrahlung großer Beschleunigeranlagen. Diese ist aber nur eingeschränkt verfügbar und sehr teuer. Laser-basierte Methoden erzeugen oft sogar noch brillanteres Licht als Synchrotrons. Den LAP-Physikern ist es nun erstmals gelungen, dies auch über einen sehr breiten Spektralbereich im Infrarot zu erreichen. Dabei passt das vorgestellte Lasersystem bequem auf einen großen Tisch, ist also wesentlich kompakter und kostengünstiger als Synchrotrons.

„Natürlich bedarf es noch vieler weiterer Schritte, um eine Krebserkrankung wirklich im Frühstadium zu erkennen, eine geeignete Messmethode und eine genaue Kenntnis der Krankheitsindikatoren zum Beispiel“, erklärt Marcus Seidel, der als Wissenschaftler in dem Technologieprojekt arbeitete. „Doch versprechen wir uns mit den deutlich verbesserten Lichtquellen genau diese Schritte als nächstes gehen zu können.“ Schließlich kann das Lasersystem auch über den Life Science-Bereich hinaus eingesetzt werden, da auch in der Chemie und der grundlegenden Physik die genaue Beobachtung molekularer Prozesse von höchster Bedeutung sind.


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung