Maßgeschneidertes Licht durch Vorbilder aus der Natur

Maßgeschneidertes Licht durch Vorbilder aus der Natur

Physik-News vom 29.07.2020
 

Einem internationalen Forschungsteam ist es erstmals gelungen, Lichtfelder durch Brennlinien zu entwickeln, die sich nicht verändern. Mit der neuen Methode nutzen die Physikerinnen und Physiker Lichtstrukturen aus, die in Regenbögen oder bei der Transmission von Licht durch Trinkgläser zu sehen sind.

Moderne Anwendungen wie die hochauflösende Mikroskopie oder die mikro- und nanoskalige Materialbearbeitung benötigen maßgeschneiderte Laserstrahlen, die sich bei der Ausbreitung nicht verändern. Dies stellt eine Herausforderung dar, denn Lichtstrahlen verbreitern sich typischerweise bei der Propagation (Beugung). Sogenannte propagations-invariante oder nicht-beugende Lichtfelder scheinen daher auf den ersten Blick nicht möglich. Wenn es gelänge, diese herzustellen, würden sie neue Anwendungen wie die Lichtscheibenmikroskopie oder das laserbasierte Schneiden, Fräsen oder Bohren mit hohen Aspektverhältnissen ermöglichen.


Dieses Foto zeigt die transversale Struktur eines nichtbeugenden Lichtfelds mit kaustischer Umrandung.

Publikation:


A. Zannotti, C. Denz, M. A. Alonso, M. R. Dennis
Shaping caustics into propagation invariant light
Nature Communications

DOI: 10.1038/s41467-020-17439-3



Einem internationalen Forschungsteam der Universitäten Birmingham und Marseille sowie der Westfälischen Wilhelms-Universität Münster (WWU) ist es jetzt gelungen, erstmalig einen aus der Natur inspirierten Ansatz zugunsten propagations-invarianter Lichtfelder zu entwickeln und umzusetzen. „Damit kann eine beliebige, gewünschte Intensitätsstruktur einfach durch die Berandung vorgegeben werden und wird damit propagations-invariant“, erläutert Mitautorin Prof. Dr. Cornelia Denz vom Institut für Angewandte Physik der WWU.

Die Physiker nutzten dafür Lichtstrukturen aus, die in Regenbögen oder bei der Transmission von Licht durch Trinkgläser zu sehen sind: spektakuläre Strahlstrukturen, sogenannte Kaustiken oder helle Fokuslinien. Das Team entwickelte eine Methode, diese Kaustiken als Basis zur Erzeugung beliebiger Strukturen zu nutzen. Damit wurde eine Methode zur intelligenten Manipulation von Strahlpropagation geschaffen. Auf diese Weise lassen sich unzählige neuartige Laserstrahlen auf der Mikrometerskala formen, die in der optischen Materialbearbeitung, der multidimensionalen Signalübertragung oder der hochauflösenden Bildgebung ganz neue Perspektiven eröffnen.

Erst vor wenigen Jahren war es gelungen, einige wenige Lichtfelder zu realisieren, die diese nichtbeugenden Eigenschaften haben, auch wenn die theoretische Idee schon älter ist: Konzentrische Ringstrukturen wie der Besselstrahl konnten propagationsinvariant hergestellt werden.

Die Theorie sah eine ganze Klasse von Strahlen voraus, deren transversale Form auf elliptischen oder parabolischen Bahnen entstehen und natürliche Lösungen der Wellengleichung darstellen. Obwohl seit langem ein Bedarf an maßgeschneiderten Lichtstrahlen mit diesen Eigenschaften besteht, sind sie experimentell kaum erzeugt worden, da die Invarianz der transversalen Intensitätsstruktur während der Propagation erhalten bleiben muss.


Diese Newsmeldung wurde mit Material der Westfälischen Wilhelms-Universität Münster via Informationsdienst Wissenschaft erstellt


Mehr zu den Themen






warte

warte

warte

warte

warte

warte

warte

warte

warte

warte