Magnetische Skyrmionen - nicht die einzigen ihrer Art

Neues aus der Forschung

Meldung vom 28.06.2018

Jülicher Forscher entdecken neuartige partikelähnliche Magnetstrukturen für das Speichern von Daten. Wenn Skyrmionen die „1“ codieren, könnten sie die bislang fehlende „0“ sein.


180702-2138_medium.jpg
Fengshan Zheng, Filipp N. Rybakov, Aleksandr B. Borisov, Dongsheng Song, Shasha Wang, Zi-An Li, Haifeng Du, Nikolai S. Kiselev, Jan Caron, András Kovács, Mingliang Tian, Yuheng Zhang, Stefan Blügel, Rafal E. Dunin-Borkowski
Experimental observation of chiral magnetic bobbers in B20-type FeGe
Nature Nanotechnology (published online 9 April 2018)
DOI: 10.1038/s41565-018-0093-3

 
Abfolge von „magnetischen Schwimmern“ (vorne) und Skyrmionen (weiter hinten) für die Informationsspeicherung

Winzig kleine magnetische Wirbel, sogenannte Skyrmionen, werden seit einiger Zeit intensiv erforscht. Sie gelten als vielversprechende Kandidaten für besonders platz- und energiesparende Datenspeicher. Wissenschaftler des Forschungszentrums Jülich haben nun eine weitere Klasse von magnetischen Objekten experimentell nachgewiesen, die sich ebenfalls wie Partikel verhalten. Sie könnten die Entwicklung der Datenspeicher einen großen Schritt voranbringen. Wenn Skyrmionen die „1“ codieren, dann könnten sie die bislang fehlende „0“ sein. Die flachen dreidimensionalen Strukturen treten an der Oberfläche spezieller Legierungen auf und werden von den Forschern auch als „chiral magnetic bobbers“, auf Deutsch „chirale magnetische Schwimmer“, bezeichnet.

„Für eine lange Zeit waren Skyrmionen die einzigen bekannten Forschungsobjekte im Bereich der sogenannten chiralen Magnete. Mit den „magnetischen Schwimmern“ kommt jetzt eine weitere Klasse hinzu, die über eine Reihe einzigartiger Eigenschaften verfügt“, freut sich Dr. Nikolai Kiselev vom Jülicher Peter Grünberg Institut (PGI-1). Vor drei Jahren hatte er gemeinsam mit Institutsdirektor Professor Stefan Blügel und weiteren Forschern die Existenz dieser neuen Klasse von magnetischen Objekten theoretisch vorhergesagt. Nun wiesen Jülicher Spezialisten auf dem Gebiet der Elektronenmikroskopie ihre Existenz erstmals experimentell nach.


 
Prinzip des Racetrack-Memory: magnetische Objekte bewegen sich von Schreib- zu Leseelementen

Die Stabilität von Skyrmionen und diesen neuartigen magnetischen Strukturen hängt zusammen mit einer Eigenschaft, die auch als Chiralität bezeichnet wird. So, wie sich die rechte Hand aus Gründen der Symmetrie nicht in die linke umwandeln lässt, lassen sich auch rechtshändige und linkshändige Magnetwirbel nicht ineinander überführen. Die Strukturen sind zudem sehr klein. Ihr Durchmesser beträgt typischerweise nur einige zehn Nanometer. Daten lassen sich mit ihnen daher sehr dicht auf einem Speicherchip zusammenpacken.

„Die Beobachtung von derart winzigen magnetischen Texturen ist nur mit speziellen Techniken möglich, die nur in wenigen Labors weltweit verfügbar sind", erklärt Professor Rafal Dunin-Borkowski, Direktor am Ernst-Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen (ER-C).

„Magnetische Schwimmer“ und Skyrmionen sind, abgesehen von ihrer Größe, noch aus einem anderen Grund für Anwendungen interessant. Sie sind beweglich. Das unterscheidet sie von Daten-Bits auf einer Festplatte. Skyrmionen und andere sogenannte magnetische Solitonen lassen sich durch schwache elektrische Stromstöße entlang einer vorgegebenen Strecke auf einem Chip verschieben. Damit ergeben sich völlig andere Möglichkeiten für die Realisierung magnetischer Solid-State-Speicher, etwa nach dem Konzept des sogenannten Skyrmionen-Racetrack-Memory.

„Mit beweglichen Skyrmionen können Daten von Schreib- zu Leseelementen wandern, ohne dass dafür bewegliche Teile wie Lese- und Schreibköpfe oder eine rotierende Hard Disk nötig wären“, erklärt Nikolai Kiselev. Das spart Energie. Denn bewegliche Komponenten benötigen in der Regel mehr Strom und Platz und sind auch anfälliger gegenüber mechanischen Stößen und Vibrationen.

Die neu entdeckten magnetischen Strukturen ermöglichen es nun, digitale Daten direkt mit zwei verschiedenen Arten von magnetischen Objekten, nämlich mit Skyrmionen und „magnetischen Schwimmern“, zu codieren. „Bisher ging man davon aus, dass die Daten irgendwie als Folge von Skyrmionen und Leerstellen dargestellt werden“, erläutert Professor Stefan Blügel. Um neben der „1“ auch die „0“ repräsentieren zu können, wird neben den schon länger bekannten Skyrmionen ein weiterer Informationsträger benötigt. Das kann etwa der Abstand zwischen aufeinanderfolgenden Skyrmionen sein. Damit durch spontane Driftbewegungen der Skyrmionen keine Information verloren geht, müsste deren Position auf irgendeine Art eingegrenzt oder quantisiert werden.

Bei der direkten Codierung mit zwei verschiedenen Objekten können sich diese dagegen relativ frei bewegen, ohne präzise Abstände einzuhalten zu müssen.

Für den Weg in die Praxis ist noch weitere Forschung nötig. Nikolai Kiselev und seine Kollegen haben die neuartigen Strukturen in einer Eisen-Germanium-Legierung nachgewiesen. Darin sind sie nur bis 200 Kelvin, das entspricht 73,5 Grad Celsius, stabil. Aus theoretischen Überlegungen lässt sich jedoch vorhersagen, dass die neuartigen Wirbel auch in in anderen Materialkombinationen vorkommen; möglicherweise auch bei Raumtemperatur, wie einige Arten von Skyrmionen, die erst kürzlich entdeckt wurden.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung