Licht-Materie-Wechselwirkung ohne Störeinflüsse

Licht-Materie-Wechselwirkung ohne Störeinflüsse

Physik-News vom 23.08.2019
 

Bestimmte Halbleiterstrukturen, Quantenpunkte genannt, könnten die Basis für eine Quantenkommunikation darstellen. Sie bilden eine effiziente Schnittstelle zwischen Materie und Licht, wobei die von den Quantenpunkten ausgesandten Photonen (Lichtteilchen) Informationen über weite Strecken transportieren könnten. Bei der Herstellung der Quantenpunkte entstanden bislang automatisch auch Strukturen, die die Kommunikation stören. Forschern der Universität Basel, der Ruhr-Universität Bochum und des Forschungszentrums Jülich ist es nun gelungen, diese Störeinflüsse zu eliminieren.

Quantenpunkte lassen sich in Halbleitern realisieren, indem Forscher zum Beispiel ein Elektron und ein Elektronenloch – also eine positive geladene Fehlstelle in der Elektronenmenge – in einem sehr begrenzten Bereich einsperren. Elektron und Loch bilden zusammen einen angeregten Zustand. Wenn sie rekombinieren, sich also sozusagen zusammentun, verschwindet der angeregte Zustand, und es wird ein Photon abgegeben. „Dieses Photon könnte als Informationsträger für eine Quantenkommunikation über lange Strecken taugen“, sagt Dr. Arne Ludwig vom Bochumer Lehrstuhl für Festkörperphysik.


Solche Halbleiter-Chips mit Quantenpunkten stellt das Bochumer Team am Lehrstuhl für Festkörperphysik her.

Publikation:


Matthias C. Löbl, Sven Scholz, Immo Söllner, Julian Ritzmann, Thibaud Denneulin, András Kovács, Beata E. Kardynał, Andreas D. Wieck, Arne Ludwig, Richard J. Warburton
Excitons in InGaAs quantum dots without electron wetting layer states
Communications Physics, 2019

DOI: 10.1038/s42005-019-0194-9



Die in Bochum hergestellten Quantenpunkte entstehen in dem Halbleitermaterial Indiumarsenid. Dieses Material lassen die Forscher auf einem Träger aus Galliumarsenid aufwachsen. Dabei entsteht zunächst eine gleichförmige Schicht aus Indiumarsenid, die nur anderthalb Atomlagen dick ist – die sogenannte Benetzungsschicht. Auf dieser Schicht erzeugen die Forscher anschließend Erhebungen: kleine Inseln von 30 Nanometern Durchmesser und nur wenigen Nanometern Höhe. Sie bilden die Quantenpunkte.

Störende Photonen aus Benetzungsschicht

Problematisch ist die Benetzungsschicht, die im ersten Schritt aufgetragen werden muss. Denn auch darin gibt es angeregte Elektron-Loch-Zustände, die zerfallen und Photonen abgeben können. In der Benetzungsschicht zerfallen diese Zustände sogar noch leichter als in den Quantenpunkten. Die dabei ausgesendeten Photonen können jedoch nicht für Quantenkommunikation genutzt werden, sondern erzeugen nur ein Rauschen im System.

Sven Scholz (links) und Arne Ludwig sind Experten für die Herstellung von Quantenpunkten in Halbleitern.

„Da die Benetzungsschicht die gesamte Fläche des Halbleiterchips umfasst, die Quantenpunkte aber nur ein Tausendstel dieser Fläche, ist das störende Licht rund tausendmal stärker als das Licht aus den Quantenpunkten“, erklärt Andreas Wieck. „Die Benetzungsschicht strahlt Photonen mit einer etwas höheren Frequenz und einer viel höheren Intensität ab als die Quantenpunkte. Es ist so, als ob die Quantenpunkte den Kammerton a aussenden würden und die Benetzungsschicht gleichzeitig ein tausendmal lauteres h.“

Zusätzliche Schicht eliminiert Störeinflüsse

„Bisher konnten wir die vorher genannten Störeinflüsse ignorieren, indem wir nur gezielt die benötigten Energiezustände angeregt haben“, sagt Matthias Löbl von der Universität Basel. „Wenn man die Quantenpunkte jedoch als Informationseinheiten für Quanten-Anwendungen nutzen will, so kann es ideal sein, diese mit mehr Elektronen zu beladen. Dann würden aber auch Energieniveaus in der Benetzungsschicht mit angeregt“, ergänzt Arne Ludwig.

Diesen Störeinfluss eliminierte das Forschungsteam nun durch eine zusätzliche Schicht aus Aluminiumarsenid, die die Wissenschaftler über den Quantenpunkten und der Benetzungsschicht wachsen ließen. Das eliminiert die Energiezustände in der Benetzungsschicht, was es wiederum unwahrscheinlicher macht, dass dort Elektronen und Löcher rekombinieren und Photonen aussenden.


Diese Newsmeldung wurde mit Material des Informationsdienstes der Wissenschaft (idw) erstellt







warte

warte

warte

warte

warte

warte

warte

warte

warte

warte