In Quantenschritten zum Urknall

In Quantenschritten zum Urknall

Physik-News vom 04.09.2013

Ein neuer Ansatz zur Vereinigung von Allgemeiner Relativitätstheorie und Quantenphysik

Was im Urknall geschah, lässt sich mit der heutigen Physik nicht beschreiben. Quantentheorie und Relativitätstheorie versagen in diesem nahezu unendlich dichten und heißen Anfangszustand des Universums. Erst eine übergeordnete Theorie der Quantengravitation, welche diese beiden Grundpfeiler der Physik vereinigt, könnte Aufschlüsse über den Beginn der Welt bringen. Wissenschaftler vom Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) in Golm/Potsdam und vom Perimeter-Institut in Kanada haben auf diesem Weg eine wichtige Entdeckung gemacht. Nach ihrer Theorie besteht der Raum aus winzigen Bausteinen. Von dieser Grundlage ausgehend gelangen sie zu einer der grundlegendsten Gleichungen der Kosmologie, der Friedmann-Gleichung, die das Universum beschreibt. Dies zeigt, dass Quantenmechanik und Relativitätstheorie tatsächlich miteinander vereinbar sind.


In einigen modernen Theorien der Quantengravitation, die die Allgemeine Relativitätstheorie und die Quantenmechanik zu vereinigen versuchen, besteht der Raum aus winzigen Elementarzellen oder „Atomen des Raumes“. Die Quantengravitation soll es ermöglichen, die Entwicklung des Universums vom Urknall bis heute mit einer Theorie zu beschreiben.

Publikation:


Steffen Gielen, Daniele Oriti, Lorenzo Sindoni
Cosmology from Group Field Theory Formalism for Quantum Gravity
Phys. Rev. Lett. 111 (2013) 031301

DOI: 10.1103/PhysRevLett.111.031301



Seit nahezu einem Jahrhundert stehen die beiden großen Theorien der Physik unvereinbar nebeneinander: Während Einsteins Allgemeine Relativitätstheorie die Schwerkraft und damit die Welt im Großen beschreibt, lässt sich mit der Quantenphysik die Welt der Atome und Elementarteilchen erklären. Beide Theorien funktionieren in ihrem Rahmen außerordentlich gut, doch so, wie sie heute formuliert werden, versagen sie in bestimmten Extrembereichen, zum Beispiel auf winzigsten Distanzen, der sogenannten Planck-Skala. So verlieren Raum und Zeit in Schwarzen Löchern und vor allem auch im Urknall ihre Gültigkeit.

Daniele Oriti vom Albert-Einstein-Institut veranschaulicht diese Situation mit einer Flüssigkeit: „Das Verhalten von strömendem Wasser können wir mit der lange bekannten, klassischen Theorie der Hydrodynamik beschreiben. Aber wenn wir zu immer kleineren Skalen vordringen und schließlich auf einzelne Atome stoßen, ist sie nicht mehr anwendbar. Dann benötigen wir die Quantenphysik.“ So wie eine Flüssigkeit aus Atomen besteht, stellt sich Oriti den Raum aus winzigen Zellen oder Atomen des Raumes“ aufgebaut vor, für deren Beschreibung eine neue Theorie nötig ist: die Quantengravitation.



Der kontinuierliche Raum wird in Elementarzellen zerlegt

In Einsteins Relativitätstheorie ist der Raum ein Kontinuum. Oriti zerlegt ihn nun in winzige Elementarzellen oder Quanten. Er wendet somit die Prinzipien der Quantenphysik auf den Raum und auf die ihn beschreibende Relativitätstheorie an. Das ist der Vereinigungsgedanke.

Ein wesentliches Problem aller Ansätze für eine Quantengravitation besteht darin, die gewaltige Größenskala von den Raum-Atomen zu den Ausmaßen des Universums zu überbrücken. Dies ist Oriti und seinem Kollegen Lorenzo Sindoni sowie dem ehemaligen Postdoc am Albert-Einstein-Institut Steffen Gielen, der jetzt am Perimeter-Institut in Kanada forscht, gelungen. Ihr Ansatz basiert auf der sogenannten Gruppenfeld-Theorie. Diese ist eng mit der Schleifen-Quantengravitation verbunden, die schon seit längerem am Albert-Einstein-Institut entwickelt wird. Die Aufgabe bestand nun darin zu beschreiben, wie sich aus den Elementarzellen der Raum des Universums entwickelt. Um im Bild der Flüssigkeit zu bleiben: Wie lässt sich aus einer Theorie für die Atome die Hydrodynamik für das strömende Wasser herleiten?

Diese mathematisch höchst anspruchsvolle Aufgabe führte jüngst zu einem überraschenden Erfolg. „Unter speziellen Annahmen entsteht der Raum aus diesen Bausteinen, und er entwickelt sich wie ein expandierendes Universum“, erklärt Oriti. „Dabei konnten wir direkt im Rahmen unserer vollständigen Theorie über den Aufbau des Raumes die Friedmann-Gleichung ableiten“, ergänzt er. Diese fundamentale Gleichung, die das expandierende Universum beschreibt, hatte der russische Mathematiker Alexander Friedmann in den 1920er Jahren auf der Basis der Allgemeinen Relativitätstheorie hergeleitet. Damit ist der Brückenschlag von der Mikro- zur Makrowelt und damit von der Quantenmechanik zur Relativitätstheorie gelungen: Die Wissenschaftler zeigen, dass aus dem Kondensat dieser Elementarzellen der Raum entsteht und sich zu einem Universum entwickelt, das unserem ähnelt.

Die Quantengravitation könnte jetzt offene Fragen zum Urknall klären

Oriti und seine Kollegen sehen sich damit erst am Beginn eines steinigen, aber hoffnungsvollen Weges. Ihre bisherige Lösung gilt nur für ein homogenes Universum. Unsere reale Welt ist aber wesentlich komplizierter. Sie enthält Inhomogenitäten, wie Planeten, Sterne und Galaxien. Derzeit sind die Physiker dabei, diese in ihre Theorie mit einzubeziehen.



Als Fernziel haben sich Oriti und Kollegen wahrlich Großes vorgenommen. Zum einen wollen sie untersuchen, ob sich der Raum sogar im Urknall beschreiben lässt. Vor einigen Jahren fand Martin Bojowald, ein ehemaliger Forscher des Albert-Einstein-Instituts im Rahmen einer vereinfachten Version der Schleifen-Quantengravitation Hinweise darauf, dass sich Zeit und Raum eventuell durch den Urknall hindurch zurückverfolgen lassen. Oriti und Kollegen hoffen, dieses Ergebnis mit ihrer Theorie bestätigen oder verbessern zu können.

Sollte sich diese weiterhin bewähren, so könnten die Forscher damit vielleicht auch die vermutete inflationäre Expansion des Universums kurz nach dem Urknall und die Natur der mysteriösen Dunklen Energie erklären. Dieses Energiefeld sorgt dafür, dass sich das Universum beschleunigt ausdehnt. Oritis Kollege Lorenzo Sindoni ergänzt deshalb: „Nur mit Hilfe einer Theorie der Quantengravitation werden wir die Entwicklung des Universums tatsächlich verstehen können.“ Damit befinden sich die AEI-Forscher in bester Gesellschaft: von Einstein und seinen Nachfahren, die seit nahezu hundert Jahren danach suchen.

Diese Newsmeldung wurde mit Material von Max-Planck-Gesellschaft - Aktuelles erstellt



   14 Meldungen
10.07.2020
Astrophysik - Relativitätstheorie
Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie
Im Jahr 2019 entdeckten die beiden MAGIC-Teleskope einen Gammablitz, dessen intensive Strahlung alle bisherigen Messungen übertraf.
10.06.2020
Relativitätstheorie
Einsteins glücklichster Gedanke: die bisher beste Bestätigung
Ein internationales Forscherteam unter Beteiligung von Astronomen vom Bonner Max-Planck-Institut für Radioastronomie hat in einem Dreifachsternsystem mit dem Pulsar PSR J0337+1715 und zwei Weißen Zwergen mit extrem hoher Präzision vermessen, dass sich Neutronensterne und Weiße Zwerge in einem Schwerefeld mit gleicher Beschleunigung bewegen.
28.04.2020
Astrophysik - Relativitätstheorie
Schwarze Löcher haben keine Haare
Ein internationales Forschungsteam bestätigt mit Hilfe des Spitzer Weltraumteleskops der NASA, dass es sich bei dem kosmischen Objekt OJ 287 um eine weit entfernte Galaxie handelt, in deren Zentrum sich zwei supermassereiche Schwarze Löcher umkreisen.
16.04.2020
Astrophysik - Relativitätstheorie
ESO-Teleskop beobachtet Sternentanz um supermassereiches schwarzes Loch und bestätigt Einstein
Beobachtungen mit dem Very Large Telescope (VLT) der ESO haben zum ersten Mal gezeigt, dass sich ein Stern, der das supermassereiche Schwarze Loch im Zentrum der Milchstraße umkreist, genauso bewegt, wie es die Allgemeine Relativitätstheorie von Einstein vorhersagt.
05.12.2018
Satelliten - Relativitätstheorie
Zweite Chance für Galileo-Satelliten
Aufgrund einer Fehlfunktion der Soyuz-Oberstufe erreichten zwei Galileo-Satelliten im August 2014 nicht ihre vorgesehene Höhe.
26.07.2018
Astrophysik - Relativitätstheorie
Einsteins Allgemeine Relativitätstheorie wird erstmalig an einem Schwarzen Loch belegt
Neue Messungen am Schwarzen Loch im Zentrum der Milchstraße zeigen, wie Einsteins Gravitätstheorie in der Praxis funktioniert / Veröffentlichung in Astronomy & Astrophysics
25.07.2018
Astrophysik - Relativitätstheorie
Wie man Sterne mit Gravitationslinsen wiegt
Mit Hilfe der Daten des Astrometrie-Satelliten Gaia haben Astronomen der Universität Heidelberg die Bewegung von Millionen von Sternen in der Milchstraße analysiert.
22.06.2018
Astrophysik - Relativitätstheorie
VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
Astronomen haben den bisher genauesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße durchgeführt: Die nahegelegene Galaxie ESO 325-G004 wirkt wie eine starke Gravitationslinse, die das Licht einer fernen Galaxie dahinter verzerrt und einen Einsteinring um ihr Zentrum bildet.
16.10.2017
Astrophysik - Optik - Relativitätstheorie
ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle
Teleskope der ESO in Chile haben zum ersten Mal im sichtbaren Licht eine Quelle von Gravitationswellen vermessen können.
17.08.2017
Astrophysik - Relativitätstheorie
Erster Nachweis relativistischer Effekte bei Sternen um galaktisches Zentrum
E
30.06.2017
Astrophysik - Quantenphysik - Relativitätstheorie
Einsteins Äquivalenzprinzip besteht einen echten Quantentest
Einsteins Äquivalenzprinzip ist für das Verständnis der Gravitation und der relativistischen Raumzeit von fundamentaler Bedeutung.
30.06.2017
Astrophysik - Physikdidaktik - Relativitätstheorie
Sind Zeitreisen physikalisch möglich?
In der aktuellen Ausgabe des Forschungsmagazins der Goethe-Universität "Forschung Frankfurt" erklären zwei Physiker, warum man den Zeitpfeil nicht umkehren kann.
30.01.2015
Festkörperphysik - Quantenphysik - Relativitätstheorie
Wie allgemein ist die Allgemeine Relativitätstheorie?
Egal ob Feder, Apfel oder Ziegelstein: Im Vakuum, wenn es keine Reibung mehr gibt und nur noch die Gravitation wirkt, fallen alle Körper gleich schnell.
04.09.2013
Quantenphysik - Relativitätstheorie
In Quantenschritten zum Urknall
Ein neuer Ansatz zur Vereinigung von Allgemeiner Relativitätstheorie und Quantenphysik

News der letzten 7 Tage     7 Meldungen


15.10.2020
Monde - Astrophysik
Magnetfeld auf dem Mond ist Überbleibsel eines uralten Kerndynamos
Eine internationale Simulations-Studie unter Beteiligung von Forschenden des Deutschen GeoForschungsZentrums GFZ in Potsdam zeigt, dass alternative Phänomene wie Asteroiden-Einschläge keine ausreichend großen Magnetfelder erzeugen.
13.10.2020
Quantenphysik - Quantenoptik
Meilenstein in der Quantenphysik: Physikern gelingt der kontrollierte Transport von gespeichertem Licht
Patrick Windpassinger und sein Team demonstrieren, wie sich in einer Wolke aus ultrakalten Atomen gespeichertes Licht über ein "optisches Förderband" transportieren lässt.
13.10.2020
Sonnensysteme - Planeten - Astrobiologie
Erdähnliche Planeten besitzen oft einen Bodyguard
Eine Gruppe von Astronomen hat ermittelt, dass die Anordnung von Gesteins-, Gas- und Eisplaneten in Planetensystemen offenbar nicht zufällig ist und von nur wenigen Anfangsbedingungen abhängt.
12.10.2020
Sterne - Schwarze_Löcher
Tod durch Spaghettisierung: Die letzten Momente eines von einem schwarzen Loch verschlungenen Sterns
Astronomen haben mit Teleskopen der Europäischen Südsternwarte (ESO) und anderer weltweit tätiger Organisationen einen seltenen Lichtblitz von einem Stern entdeckt, der von einem supermassereichen schwarzen Loch zerrissen wird.
12.10.2020
Planeten - Satelliten
Neues Wasservorkommen auf dem Mars entdeckt
Ein internationales Team von Wissenschaftlerinnen und Wissenschaftlern unter Beteiligung der Jacobs University Bremen hat Hinweise auf die Existenz mehrerer Gewässer gefunden, die unter der Südpolkappe des Mars verborgen sind.
12.10.2020
Teilchenphysik
Wenn Mensch und Maschine dieselbe Idee haben
Über Iridiumoxid muss man völlig anders nachdenken als bisher – zu diesem Ergebnis kam nun sowohl ein menschliches Forschungsteam als auch ein Machine Learning Algorithmus.
07.10.2020
Optik - Quantenphysik
Intelligente Nanomaterialien für Photonik
In Kombination mit Lichtwellenleitern ermöglichen 2D-Materialien mit herausragenden optischen Eigenschaften ganz neue Anwendungen im Bereich der Sensorik, der nichtlinearen Optik und der Quantenelektronik.