Erster Nachweis relativistischer Effekte bei Sternen um galaktisches Zentrum

Neues aus der Forschung

Meldung vom 17.08.2017

Eine Neuauswertung von Daten vom Very Large Telescope der ESO durch Wissenschaftler von der Universität zu Köln und vom Max-Planck-Institut für Radioastronomie in Bonn deutet darauf hin, dass die Bahnen von Sternen um das Schwarze Loch im Zentrum der Milchstraße die schwachen, von Einsteins Allgemeiner Relativitätstheorie vorhergesagten Effekte zeigen könnten. Es gibt Hinweise darauf, dass die Umlaufbahn des Sterns S2 leicht von der mit klassischer Physik berechneten Bahn abweicht. Die Ergebnisse stellen nur den Auftakt zu einer Reihe weitere präziser Messungen und Tests der Relativitätstheorie dar, die mit dem GRAVITY-Instrument im Jahr 2018 durchgeführt werden sollen, wenn der Stern S2 dem Schwarzen Loch sehr nahe kommt.


170817-1429_medium.jpg
 
Künstlerische Darstellung der Umlaufbahnen der Sterne nahe des Galaktischen Zentrums.
Illustration: ESO/M. Parsa/L. Calçada
M. Parsa et al. 2017. Investigating the Relativistic Motion of the Stars Near the Black Hole in the Galactic Center. Astrophysical Journal.

Im Zentrum der Milchstraße, 26.000 Lichtjahre von der Erde entfernt, liegt das uns nächste supermassereiche Schwarze Loch, das eine Masse von vier Millionen Sonnenmassen hat. Dieses Monster ist von einer kleinen Gruppe von Sternen umgeben, die es aufgrund seines sehr starken Gravitationsfeldes mit hoher Geschwindigkeit umkreisen. Es ist eine perfekte Umgebung, um die Gravitationsphysik und insbesondere Einsteins Allgemeine Relativitätstheorie zu testen.

Ein Team deutscher und tschechischer Astronomen hat mithilfe neuer Analysemethoden die bereits existierenden Beobachtungsdaten analysiert, die im Laufe der letzten zwanzig Jahre u.a. mit dem Very Large Telescope (VLT) der ESO von dien Sternen gesammelt wurden [1], die das Schwarze Loch umkreisen. Sie verglichen die gemessenen Sternumlaufbahnen mit Vorhersagen, die mit dem klassischen Newtonschen Gravitationsgesetz getroffen wurden, sowie mit Vorhersagen aus der Allgemeinen Relativitätstheorie.

Das Team fand Hinweise für eine kleine Veränderung in der Bewegung eines Sterns, der als S2 bezeichnet wird, die mit den Vorhersagen der Allgemeinen Relativitätstheorie im Einklang steht [2]. Die Veränderung durch relativistische Effekte bei der Form der Umlaufbahn beträgt nur wenige Prozent und bei der Orientierung nur etwa ein Sechstel Grad [3]. Sobald diese Messung bestätigt werden kann, wäre damit erstmalig Effekte der Allgemeinen Relativitätstheorie für Sterne gelungen, die ein supermassereiches Schwarzes Loch umkreisen.

Marzieh Parsa, Doktorandin an der Universität zu Köln und Erstautorin des Fachartikels, in dem die Ergebnisse präsentiert werden, freut sich: „Das Galaktische Zentrum ist wirklich die beste Umgebung, um die Bewegung von Sternen unter relativistischen Bedingungen zu untersuchen. Ich war erstaunt, wie gut wir die Methoden, die wir mit simulierten Sternen entwickelt haben, auf die hochpräzisen Daten für die innersten Sterne mit hohen Geschwindigkeiten nahe des Schwarzen Lochs anwenden konnten.“

Die hohe Genauigkeit der Positionsmessungen, die durch die Nahinfrarot-Instrumente mit adaptiver Optik am VLT ermöglicht wurden, war für die Studie ausschlaggebend [4]. Entscheidend waren sie nicht nur während der engen Annäherung an das Schwarze Loch, sondern vor allem während der Zeit, als S2 weiter weg vom Schwarzen Loch war. Die letzteren Daten erlaubten eine genaue Bestimmung der Form der Umlaufbahn.

„Im Laufe unserer Analyse haben wir erkannt, dass man für die Bestimmung der relativistischen Effekte für S2 die gesamte Umlaufbahn mit hoher Präzision kennen muss“, erklärt Andreas Eckart, Teamleiter an der Universität zu Köln.

Neben genaueren Informationen über die Umlaufbahn des Sterns S2 liefert die neue Analyse auch mit einer höheren Genauigkeit als zuvor die Masse des Schwarzen Lochs und seinen Abstand von der Erde [5].

Koautor Vladimir Karas von der Akademie der Wissenschaften in Prag in Tschechien schaut gespannt in die Zukunft: „Das eröffnet in diesem Bereich der Wissenschaft die Möglichkeit für weitere Theorien und Experimente!“

Die Studie ist nur der Auftakt einer Reihe von Beobachtungen des galaktischen Zentrums durch Astronomen auf der ganzen Welt. Im Jahr 2018 wird der Stern S2 dem supermassereichen Schwarzen Loch sehr nahe kommen. Bis dahin soll das GRAVITY-Instrument, das von einem großen internationalen Konsortium unter der Führung des Max-Planck-Instituts für extraterrestrische Physik in Garching entwickelt [6] und am VLT-Interferometer montiert wurde [7], die Umlaufbahnen nochmal um einiges genauer messen können als es derzeit möglich ist. Man geht davon aus, dass GRAVITY, das bereits jetzt Hochpräzisionsmessungen des galaktischen Zentrums durchführt, nicht nur die Effekte der Allgemeinen Relativitätstheorie klar nachweisen wird, sondern auch, dass die Messungen es Astronomen ermöglichen werden, nach Abweichungen von der Allgemeinen Relativitätstheorie zu suchen, die eine gänzlich neue Physik zu Tage bringen könnten.

Endnoten

[1] Für die Untersuchung wurden Daten der Nahinfrarot-NACO-Kamera, die derzeit am VLT-Hauptteleskop 1 (Antu) montiert ist, und des Nahinfrarot-Bildgebungsspektrometers SINFONI am Hauptteleskop 4 (Yepun) verwendet. Desweiteren wurden auch bereits veröffentlichte Daten des Keck-Observatoriums ausgewertet.

[2] S2 ist ein Stern mit 15 Sonnenmassen auf einer elliptischen Umlaufbahn um das supermassereiche Schwarze Loch. Er hat eine Umlaufzeit von etwa 15,6 Jahren und nähert sich dem Schwarzen Loch bis auf eine Entfernung von 17 Lichtstunden — das entspricht gerade einmal der 120-fachen Entfernung zwischen Sonne und Erde.

[3] Ein ähnlicher, aber viel kleinerer Effekt ist bei der sich verändernden Umlaufbahn des Planeten Merkur im Sonnensystem beobachtbar. Diese Messung war eine der frühesten Beweise im späten 19. Jahrhundert, dass das Newtonsche Gravitationsgesetz nicht vollständig war, und dass es eines neuen Ansatzes und neuer Erkenntnisse bedurfte, um starke Gravitationsfelder zu verstehen. Dies führte schließlich dazu, dass Einstein im Jahr 1915 seine Allgemeine Relativitätstheorie veröffentlichte, die erstmals eine gekrümmte Raumzeit beschrieb.

Wenn die Umlaufbahnen von Sternen oder Planeten unter Verwendung der Allgemeinen Relativitätstheorie anstatt des Newtonschen Gravitationsgesetzes berechnet werden, verhalten sie sich anders. Die Vorhersagen der kleinen Veränderungen in Form und Orientierung der Umlaufbahnen im Laufe der Zeit unterscheiden sich in beiden Theorien voneinander und können mit Messungen verglichen werden, um die Gültigkeit der allgemeinen Relativität zu testen.

[4] Ein System adaptiver Optik gleicht die von der turbulenten Atmosphäre erzeugten Bildverzerrungen in Echtzeit aus und ermöglicht ein höheres Auflösungsvermögen (Bildschärfe), das grundsätzlich nur durch den Spiegeldurchmesser und die bei der Beobachtung verwendete Wellenlänge begrenzt ist.

[5] Das Team fand für das Schwarze Loch eine Masse von 4,2 × 106 Sonnenmassen und eine Entfernung von 8,2 Kiloparsec, was fast 27.000 Lichtjahren entspricht.

[6] Die Universität zu Köln ist Teil des GRAVITY-Teams (http://www.mpe.mpg.de/ir/gravity) und hat die Strahlkombinationsspektrometer zum System beigetragen.

[7] Erstes Licht sah GRAVITY Anfang 2016 und hat seitdem bereits das galaktische Zentrum beobachtet.


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung