Ein einzelnes Atom vermittelt starke Wechselwirkungen zwischen Lichtquanten

Neues aus der Forschung

Ein einzelnes Atom vermittelt starke Wechselwirkungen zwischen Lichtquanten

Meldung vom 28.06.2018

Physiker am MPQ in Garching beobachten in einem Atom-Resonator-System starke Wechselwirkungen zwischen verschiedenfarbigen Photonen.


180630-0059_medium.jpg
Christoph Hamsen, Karl Nicolas Tolazzi, Tatjana Wilk, and Gerhard Rempe
Strong coupling between photons of two light fields mediated by one atom
Nature Physics
DOI: 10.1038/s41567-018-0181-1

 
Doktorand Nicolas Tolazzi vor dem Experiment, in der Hand ein Spielzeug-Lichtschwert.

Wer wäre nicht gerne im Besitz eines Lichtschwerts? Diese aus der Science-Fiction stammende Idee mag uns geradezu begeistern, doch ihre technische Umsetzung ist noch in weiter Ferne. Denn Lichtquanten – sogenannte Photonen – treten nicht miteinander in Wechselwirkung. Schon im Alltag machen wir die Erfahrung, dass sich zwei Lichtstrahlen ungehindert kreuzen können, egal, ob es sich bei ihren Quellen um traditionelle Leuchten oder um Laser handelt.

Eben diese Eigenschaft macht Photonen zu geeigneten Trägern von Quanteninformation für Quantenkommunikation und Quantencomputer. Für die Verarbeitung von Quanteninformation sind allerdings kontrollierte Wechselwirkungen zwischen den Photonen an sogenannten Quantenknoten erforderlich, welche die Rechenschritte ausführen.

Physiker der Abteilung Quantendynamik am Max-Planck-Institut für Quantenoptik haben jetzt diese kontrollierte Wechselwirkung zwischen verschiedenfarbigen Lichtstrahlen auf dem Level einzelner Photonen nachgewiesen. Mit Hilfe eines in einem optischen Resonator gespeicherten Atoms beobachteten sie zwei Bereiche, in denen sich die Lichtfelder entweder gegenseitig blockieren oder das System gemeinsam passieren. Eine unmittelbare Anwendung dieses Effekts ist, wie die Wissenschaftler zeigten, ein optischer Schalter, bei dem ein Strahl den anderen ausschalten kann.

Trotz ihres Teilchencharakters verfügen Photonen weder über eine Masse noch über eine elektrische Ladung und können demzufolge nicht miteinander „sprechen“. Mit elektrisch geladenen Materieteilchen können sie jedoch aufgrund ihres elektrischen Feldes in Wechselwirkung treten. Wenn diese nichtlinear und ausreichend stark ist, kann sie ihrerseits genutzt werden, um eine Wechselwirkung zwischen Lichtquanten zu vermitteln. Der wahrscheinlich stärkste Effekt lässt sich erzielen, wenn das Atom nur zwei Energieniveaus besitzt, den Grundzustand und einen angeregten. Denn dann führt die Aufnahme eines ersten Photons dazu, dass das Atom zu einem Emitter wird. D.h., die Transmission eines Photons hängt davon ab, ob zuvor ein anderes da gewesen ist.

Die große Herausforderung bestand in den vergangenen 30 Jahren darin, die entsprechende Wechselwirkung, die bei einem einzelnen Atom im freien Raum vernachlässigbar ist, ausreichend groß zu machen. Befindet sich das Atom dagegen zwischen zwei hoch-reflektierenden Spiegeln, dann kommt das eingestrahlte Photon immer wieder am Atom vorbei und ist gleichzeitig eingeschlossen in einem kleinen Volumen in dessen nächster Umgebung. Diese Technik führt zu einer starken Wechselwirkung auf dem Einzel-Photonen-Level. Solange sich diese aber auf gleichartige Photonen aus einem Laserstrahl beschränkte, war der Effekt vor allem an der Photonen-Statistik zu erkennen, Beispiele dafür sind die Einzel-Photon und die Zwei-Photonen-Blockade.

Strahlt man in diesen aus zwei Spiegeln geformten Resonator jedoch ein zweites Lichtfeld mit einer anderen Wellenlänge ein, dann lässt sich, bei einer geeigneten Energielevel-Struktur, eine Wechselwirkung zwischen zwei verschiedenfarbigen Photonen realisieren. Christoph Hamsen und Kollegen gelang es, die technischen Herausforderungen zu meistern und ein sogenanntes N-System zu verwirklichen, an dem sie neuartige Effekte der gegenseitigen Blockade der Photonen bzw. ihres nur gemeinsam möglichen Durchgangs beobachteten. Im Falle der Blockade arbeitete das System wie ein optischer Schalter, bei dem jedes Lichtfeld das andere ein- oder ausschalten kann.

Diese Effekte beruhen auf der neuartigen Energielevel-Struktur des Systems, das sich aus der starken Kopplung von zwei Lichtfeldern und dem Atom ergibt. In diesem Level-Schema korrespondiert jeder einzeln anregbare Energiezustand mit einer spezifischen Kombination der Photonenzahlen in den beiden Strahlen.

Während also Lichtschwerter weiterhin Science-Fiction bleiben, weist das neue System kohärente Wechselwirkung zwischen Photonen auf. Sein doppelt nicht-lineares Niveauschema ebnet den Weg zu nicht-linearer Quanten-Sensorik, bei der die Zahl der Photonen in dem einen Strahl ein Maß für die Zahl der Photonen in dem anderen Strahl ist.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 18.11.2018 15:05

Naturkonstanten als Hauptdarsteller

Generalkonferenz für Maß und Gewicht (CGPM) verabschiedet Revision des Internationalen Einheitensystems.

Meldung vom 18.11.2018 14:57

Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. ...

Meldung vom 18.11.2018 14:44

Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physik ...

Meldung vom 18.11.2018 14:38

Kometen als Wasserträger für Exoplaneten

Erst 2016 haben WissenschafterInnen mit Proxima Centauri b den der Erde nächstgelegenen und potenziell bewohn ...

Meldung vom 18.11.2018 14:34

Eine kalte Supererde in unserer Nachbarschaft

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie (MPIA) ...

Meldung vom 18.11.2018 14:22

Die Umgebung macht das Molekül zum Schalter

Erstmals haben Physiker der Universität Würzburg ein organisches Molekül so positioniert, dass dieses zwei ...

Meldung vom 18.11.2018 14:09

Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Mat ...

Meldung vom 18.11.2018 14:02

Wenn sich unterschiedliche Systeme gleich verhalten

Unterschiedliche physikalische Systeme – in sich abgeschlossen und fern des Gleichgewichts – können sich ...

Meldung vom 18.11.2018 13:57

«Synchronisiertes» Licht

Wenn Fotoemitter miteinander kooperieren, dann strahlen sie gleichzeitig, ein Phänomen, das als Superfluoresz ...

Meldung vom 07.11.2018 22:46

Magnetfeld heizt Weißen Zwergen ein

Universität Tübingen an internationaler Studie beteiligt: Erstmals lässt sich erklären, warum mancher der ...

Meldung vom 07.11.2018 22:36

ALMA und MUSE entdecken einen galaktischen Springbrunnen

Beobachtungen mit ALMA und dem MUSE-Spektrografen am VLT der ESO haben eine gewaltige Fontäne aus molekularem ...




11.05.2018:
Vorsicht, Glatteis!


Newsletter

Neues aus der Forschung