ESO-Teleskop beobachtet Sternentanz um supermassereiches schwarzes Loch und bestätigt Einstein

ESO-Teleskop beobachtet Sternentanz um supermassereiches schwarzes Loch und bestätigt Einstein

Physik-News vom 16.04.2020
 

Beobachtungen mit dem Very Large Telescope (VLT) der ESO haben zum ersten Mal gezeigt, dass sich ein Stern, der das supermassereiche Schwarze Loch im Zentrum der Milchstraße umkreist, genauso bewegt, wie es die Allgemeine Relativitätstheorie von Einstein vorhersagt. Seine Umlaufbahn hat die Form einer Rosette, während die Newtonsche Gravitationstheorie die Form einer Ellipse vorhersagt. Ermöglicht wurde dieses lang ersehnte Ergebnis durch immer genauere Messungen im Laufe von fast 30 Jahren, die es den Wissenschaftlern ermöglicht haben, die Geheimnisse des im Herzen unserer Galaxie schlummernden Giganten zu entschlüsseln.

„Einsteins Relativitätstheorie'>Allgemeine Relativitätstheorie sagt voraus, dass gravitativ gebundene Bahnen von Himmelskörpern nicht wie in der Newtonschen Gravitation geschlossen sind. Vielmehr erfährt die Bahnellipse selbst eine Rotation in Bewegungsrichtung um den anziehenden Körper herum. Dieser berühmte Effekt - erstmals bei der Umlaufbahn des Planeten Merkur um die Sonne beobachtet - war der erste Beleg für die Gültigkeit der Allgemeine Relativitätstheorie. Hundert Jahre später haben wir nun den gleichen Effekt bei der Bewegung eines Sterns entdeckt, der die kompakte Radioquelle Sagittarius (Sgr) A* im Zentrum der Milchstraße umkreist. Dieser Durchbruch durch Beobachtungen untermauert den Beweis, dass Sgr A* ein supermassereiches Schwarzes Loch mit der 4-Millionenfachen Masse der Sonne sein muss“, sagt Reinhard Genzel, Direktor am Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching und Initiator des 30 Jahre dauernden Programms, das zu diesem Ergebnis führte.


Künstlerische Darstellung der Schwarzschild-Präzession.

Publikation:


GRAVITY Collaboration
Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole
Astronomy & Astrophysics, April 2020

DOI: 10.1051/0004-6361/202037813



In einer Entfernung von 26.000 Lichtjahren von der Sonne gelegen, bilden Sgr A* und der dichte Sternenhaufen um ihn herum ein einzigartiges Labor zur Überprüfung der Physik in einem ansonsten unerforschten und extremen Gravitationsregime. Einer dieser Sterne, S2, bewegt sich auf das supermassereiche Schwarze Loch zu, und zwar in einer Entfernung von weniger als 20 Milliarden Kilometern (hundertzwanzigmal die Entfernung zwischen Sonne und Erde), was ihn zu einem der nächstgelegenen Sterne macht, die je auf einer Umlaufbahn um den massereichen Riesen gefunden wurden. Bei seiner dichtesten Annäherung an das Schwarze Loch rast S2 mit fast drei Prozent der Lichtgeschwindigkeit durch den Weltraum und vollendet einen Umlauf einmal alle 16 Jahre. „Nachdem wir den Stern über zweieinhalb Jahrzehnte in seiner Umlaufbahn verfolgt haben, können wir mit unseren exzellenten Messungen die Schwarzschild-Präzession von S2 auf seiner Bahn um Sgr A* zuverlässig nachweisen“, sagt Stefan Gillessen vom MPE, der die Analyse der Messungen leitete, die heute in der Zeitschrift Astronomy & Astrophysics veröffentlicht wurden.

Die meisten Sterne und Planeten haben eine von der Kreisbahn abweichende Umlaufbahn und bewegen sich daher bisweilen auf das Objekt zu, um das sie rotieren, und von ihm weg. Die Umlaufbahn von S2 verläuft so, dass sich die Lage seines dem supermassereichen Schwarzen Loch am nächsten gelegenen Punktes mit jeder Umdrehung ändert, so dass die nächste Umlaufbahn gegenüber der vorhergehenden gedreht wird, wodurch eine Rosettenform entsteht. Die Relativitätstheorie'>Allgemeine Relativitätstheorie liefert eine präzise Vorhersage, wie stark sich seine Bahn ändert. Die neuesten Messungen aus dieser Studie stimmen genau mit der Theorie überein. Dieser Effekt, bekannt als Schwarzschild-Präzession, war noch nie zuvor für einen Stern um ein supermassereiches Schwarzes Loch gemessen worden.

Die Studie mit dem VLT der ESO hilft den Wissenschaftlern auch, mehr über die Umgebung des supermassereichen Schwarzen Lochs im Zentrum unserer Galaxie zu erfahren. „Weil die S2-Messungen der Allgemeinen Relativitätstheorie so gut folgen, können wir strenge Grenzen dafür setzen, wie viel unsichtbares Material, wie etwa verteilte dunkle Materie oder mögliche kleinere Schwarze Löcher, um Sgr A* herum vorhanden ist. Dies ist von großem Interesse für das Verständnis der Entstehung und Entwicklung supermassereicher Schwarzer Löcher“, sagen Guy Perrin und Karine Perraut, die französischen leitenden Wissenschaftler des Projekts.

Dieses Ergebnis ist der Höhepunkt von 27 Jahren Beobachtungen des S2-Sterns mit einer Vielzahl von Instrumenten, die zum größten Teil am VLT der ESO in der Atacama-Wüste in Chile eingesetzt wurden. Die Anzahl der Datenpunkte, die die Position und Geschwindigkeit des Sterns markieren, zeugt von der Gründlichkeit und Genauigkeit der neuen Forschung: Das Team führte insgesamt über 330 Messungen mit den Instrumenten GRAVITY, SINFONI und NACO durch. Da S2 Jahre braucht, um das supermassereiche Schwarze Loch zu umkreisen, war es entscheidend, dem Stern fast drei Jahrzehnte lang zu folgen, um die Feinheiten seiner Bahnbewegung zu entschlüsseln.

„Einsteins Relativitätstheorie'>Allgemeine Relativitätstheorie sagt voraus, dass gravitativ gebundene Bahnen von Himmelskörpern nicht wie in der Newtonschen Gravitation geschlossen sind. Vielmehr erfährt die Bahnellipse selbst eine Rotation in Bewegungsrichtung um den anziehenden Körper herum. Dieser berühmte Effekt - erstmals bei der Umlaufbahn des Planeten Merkur um die Sonne beobachtet - war der erste Beleg für die Gültigkeit der Allgemeine Relativitätstheorie. Hundert Jahre später haben wir nun den gleichen Effekt bei der Bewegung eines Sterns entdeckt, der die kompakte Radioquelle Sagittarius (Sgr) A* im Zentrum der Milchstraße umkreist. Dieser Durchbruch durch Beobachtungen untermauert den Beweis, dass Sgr A* ein supermassereiches Schwarzes Loch mit der 4-Millionenfachen Masse der Sonne sein muss“, sagt Reinhard Genzel, Direktor am Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching und Initiator des 30 Jahre dauernden Programms, das zu diesem Ergebnis führte.


Diese Newsmeldung wurde mit Material des Max-Planck-Instituts für Astronomie via Informationsdienst Wissenschaft erstellt


Die News der letzten 14 Tage 1 Meldungen







warte

warte

warte

warte

warte

warte

warte

warte

warte

warte