Bindungsbruch: Mitmachen oder nicht

Neues aus der Forschung

Meldung vom 06.07.2018

Ob und wie sich chemische Reaktionen durch gezielte Schwingungsanregung der Ausgangsstoffe beeinflussen lassen, untersuchen Physiker um Roland Wester an der Universität Innsbruck. Sie konnten nun demonstrieren, dass die Anregung mit einem Laserstrahl die Effizienz einer chemischen Austauschreaktion nicht beeinflusst und die angeregte Molekülgruppe bei der Reaktion nur als Zuschauer fungiert.


180715-2216_medium.jpg
 
In einem eigens konstruierten Experiment können die Forscher die Austauschreaktion fast wie in einem Film detailgenau beobachten.
Martin Stei, Eduardo Carrascosa, Alexander Doerfler, Jennifer Meyer, Balázs Olasz, Gábor Czakó, Anyang Li, Hua Guo, Roland Wester
Stretching vibration is spectator in nucleophilic substitution
Science Advances 2018 (Open Access)
DOI: 10.1126/sciadv.aas9544


Eine häufig verwendete Reaktion in der Organischen Chemie ist die nukleophile Substitution. Sie spielt zum Beispiel eine wichtige Rolle in der Synthese neuer Verbindungen oder bei Biomolekülen in Lösung und ist deshalb auch industriell von großer Bedeutung. Bei der Reaktion treffen geladene Teilchen auf Moleküle und eine molekulare Gruppe wird dabei durch eine andere ersetzt. Seit langem versucht die Wissenschaft diese Vorgänge im Grenzbereich von Chemie und Physik auf atomarer Ebene im Labor zu reproduzieren und zu verstehen. Das Team um den Experimentalphysiker Roland Wester am Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck ist hier eine der weltweit führenden Forschungsgruppen.

Andere Reaktion verstärkt

In einem eigens konstruierten Experiment lassen die Innsbrucker Physiker die geladenen Teilchen mit Molekülen im Vakuum kollidieren und untersuchen die Reaktionsprodukte. Um festzustellen, ob die gezielte Schwingungsanregung einen Einfluss auf eine chemische Reaktion hat, nutzen die Wissenschaftler einen Laserstrahl, der einen Bereich des Moleküls in Schwingung versetzt. Im aktuellen Experiment kamen negativ geladene Fluor-Teilchen (F-) und Jodmethan-Moleküle (CH3I) zum Einsatz. Bei der Kollision entstehen wegen des Austauschs der Jod-Bindung durch eine Fluor-Bindung ein Fluormethan-Molekül und ein negativ geladenes Jod-Teilchen. Bevor die Teilchen aufeinandertreffen, werden mit dem Laser im Moleküle Streckschwingungen der Wasserstoff-Kohlenstoff-Verbindungen angeregt. „Unsere Messungen zeigen, dass die Laseranregung die Austauschreaktion nicht verstärkt“, sagt die beteiligte Wissenschaftlerin Jennifer Meyer. „Die Wasserstoffatome scheinen die Reaktion nur zu beobachten.“ Untermauert wird das Ergebnis durch die Beobachtung, dass eine Konkurrenz-Reaktion stark zunimmt. Dabei wird dem Jodmethan-Moleküle ein Wasserstoffatom entrissen und es entsteht ein Fluorwasserstoff (HF). „Wir lassen 20 Mal pro Sekunde zwei Teilchen aufeinanderprallen, jedes zweite Mal kommt der Laser zum Einsatz. Und das wiederholen wir Millionen Mal“, erklärt Meyer. „Immer dann, wenn der Laser einstrahlt, wird diese Protonentauschreaktion drastisch verstärkt.“ Theoretische Chemiker der Universität Szeged in Ungarn und der University of New Mexico in den USA bestätigten die experimentellen Ergebnisse aus Innsbruck mit Hilfe von Computersimulationen.

Rolle der Beobachter im Fokus

In der hochpräzisen Untersuchung von chemischen Prozessen wurde bisher vor allem das einfachste Modell erforscht, die Reaktion eines Atoms mit einem zweiatomigen Molekül. „Hier sind alle Teilchen unweigerlich an der Reaktion beteiligt. Es gibt keine Beobachter“, sagt Roland Wester. „Das von uns nun untersuchte System ist so groß, dass erstmals Beobachter auftauchten. Es ist aber noch klein genug, um diese Beobachter noch sehr präzise erforschen zu können.“ Bei großen Molekülen gibt es sehr viele Teilchen, die nicht direkt an einer Reaktion beteiligt sind. Deren Rolle zu untersuchen, ist das langfristige Ziel der Arbeitsgruppe um Roland Wester. Dazu wollen die Forscher auch das aktuelle Experiment noch verfeinern, um mögliche subtile Effekte aufzudecken.

Laserkontrollierte Chemie

Für die Anwendung wichtig ist dabei auch die Frage, ob durch die gezielte Anregung einzelner Molekülgruppen bestimmte Reaktionen verstärkt werden können. „Wenn man etwas verstanden hat, kann man auch Kontrolle ausüben“, resümiert Roland Wester. „Anstatt eine Reaktion über Wärme anzuregen, macht es unter Umständen Sinn, nur einzelne Molekülgruppen anzuregen, um eine bestimmte Reaktion zu erzielen,“ ergänzt Jennifer Meyer. So lassen sich möglicherweise konkurrierende Reaktionsprozesse vermeiden, die in der industriellen Chemie oder biomedizinischen Forschung ein häufiges Problem darstellen. Je besser die Kontrolle über die chemische Reaktion ist, deshalb weniger Abfall entsteht und desto geringer fallen die Kosten aus.

Die aktuelle Publikation ist in der Fachzeitschrift Science Advances erschienen. Gefördert wurden die Forschungen unter anderem vom österreichischen Wissenschaftsfonds FWF und der Österreichischen Akademie der Wissenschaften.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung