Asymmetrische Nano-Antennen liefern Femtosekunden-Pulse für Optoelektronik

Asymmetrische Nano-Antennen liefern Femtosekunden-Pulse für Optoelektronik

Physik-News vom 26.06.2018
 

Einem Team unter Leitung der TUM-Physiker Alexander Holleitner und Reinhard Kienberger ist es erstmals gelungen, mit Hilfe nur wenige Nanometer großer Metallantennen ultrakurze, elektrische Pulse auf einem Chip zu erzeugen, diese dann einige Millimeter weiter wieder kontrolliert auszulesen. Die Technik ermöglicht die Entwicklung neuer, leistungsstarker Terahertz-Komponenten.

Die klassische Elektronik ermöglicht Frequenzen bis etwa 100 Gigahertz, die Opto-Elektronik nutzt elektromagnetische Phänomene ab zehn Terahertz. Der Bereich dazwischen gilt als sogenannte Terahertz-Lücke, da Bauelemente zur Signalerzeugung, Umwandlung und Detektion in diesem bislang extrem schwierig zu realisieren sind.


Einige Femtosekunden lange Pulse des Pump-Lasers (links) erzeugen elektrische on-chip Pulse im Terahertz-Frequenzbereich. Mit dem rechten Laser wird die Information wieder ausgelesen.

Publikation:


C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque-Sierra, M. Wörle, R. Kienberger, A. Holleitner
Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters
Nature Communications June 25, 2018

DOI: 10.1038/s41467-018-04666-y



Den TUM-Physikern Alexander Holleitner und Reinhard Kienberger ist es mit Hilfe winziger, sogenannter plasmonischer Antennen gelungen, elektrische Pulse im Frequenz-Bereich von bis zu zehn Terahertz zu generieren und über einen Chip laufen zu lassen. Plasmonisch nennen Forscher die Antennen, wenn diese aufgrund ihrer Form die Lichtintensität an den Metalloberflächen verstärken.


Elektronenmikroskopische Aufnahme des Chips mit asymmetrischen plasmonischen Antennen aus Gold auf Saphir.

Asymmetrische Antennen

Der Form der Antennen kommt eine wichtige Bedeutung zu. Sie sind asymmetrisch, eine Seite der nanometergroßen Metallstrukturen ist spitzer als die andere. Regt ein über eine Linse fokussierter Laserpuls die Antennen an, emittieren sie an ihrer spitzen Seite mehr Elektronen als an der gegenüberliegenden flachen. Zwischen den Kontakten fließt ein elektrischer Strom – aber nur solange die Antennen mit dem Laserlicht angeregt werden.

„Bei der Photoemission werden Elektronen, durch den Lichtpuls ausgelöst, aus dem Metall in das Vakuum ausgesendet“, erklärt Christoph Karnetzky, Erstautor der Nature-Arbeit. „Alle Lichteffekte sind auf der spitzen Seite stärker, auch die Photoemission, mit deren Hilfe wir einen kleinen Strom generieren.“

Ultrakurze Terahertz-Signale

Die Lichtpulse waren nur wenige Femtosekunden lang, entsprechend kurz waren auch die elektrischen Pulse in den Antennen. Technisch ist der Aufbau besonders interessant, weil die Nano-Antennen in mehrere Millimeter große Terahertz-Schaltkreise integriert werden konnten. Ein Femtosekunden-Laserpuls mit einer Frequenz von 200 Terahertz könne in den Schaltkreisen auf dem Chip ein ultrakurzes Terahertz-Signal mit einer Frequenz von bis zu 10 Terahertz erzeugen, so Karnetzky.

Als Chip-Material verwendeten die Forscher Saphir, weil es sich optisch nicht anregen lässt und deshalb keine Störung verursacht. Im Hinblick auf zukünftige Einsatzmöglichkeiten setzten sie Laser mit einer Wellenlänge von 1,5 Mikrometern ein, wie sie in herkömmlichen Internet-Glasfaserkabeln genutzt werden.

Eine erstaunliche Entdeckung

Holleitner und seine Kollegen machten noch eine weitere erstaunliche Entdeckung: Sowohl die elektrischen als auch die Terahertz-Pulse hingen nicht-linear von der Anregungsleistung des benutzten Lasers ab. Dies deutet darauf hin, dass die Photoemission in den Antennen durch die Absorption von mehreren Photonen pro Lichtpuls ausgelöst wird.

„Derart schnelle, nichtlineare on-chip Pulse gab es bisher noch nicht“, sagt Alexander Holleitner, und hofft, mit Hilfe dieser noch schnellere Tunnel-Emissionseffekte in den Antennen entdecken und auch für Chip-Anwendungen nutzen zu können.


Diese Newsmeldung wurde mit Material idw erstellt







warte

warte

warte

warte

warte

warte

warte

warte

warte

warte