Wattstunde

Wattstunde

(Weitergeleitet von Gigawattstunde)
GWh ist eine Weiterleitung auf diesen Artikel. Weitere Bedeutungen von „GWH“ finden sich unter GWH.
Physikalische Einheit
Einheitenname Wattstunde

Einheitenzeichen $ \mathrm{Wh} $
Physikalische Größe(n) Energie, Arbeit, innere Energie, Wärme
Formelzeichen $ W,\, E\, $
Dimension $ \mathsf{M\;L^2\;T^{-2} } $
System Zum Gebrauch mit dem SI zugelassen
In SI-Einheiten $ \mathrm{1 \, Wh = 3{,}6 \; kWs = 3{,}6 \; kJ} $
Abgeleitet von Joule

Die Wattstunde (Einheitenzeichen: Wh) ist eine Maßeinheit der Arbeit bzw. der Energie. Sie gehört zwar nicht zum internationalen Einheitensystem (SI), ist zum Gebrauch mit dem SI aber zugelassen.[1] Dadurch[2] ist sie eine gesetzliche Maßeinheit. Eine Wattstunde entspricht der Energie, welche ein System (z. B. Maschine, Mensch, Glühlampe) mit einer Leistung von einem Watt in einer Stunde aufnimmt oder abgibt.

Im Alltag gebräuchlich und verbreitet ist die Kilowattstunde (kWh), das Tausendfache der Wattstunde. In dieser Einheit werden vor allem Strom-, aber auch Heizwärmekosten abgerechnet und mit Messeinrichtungen wie dem Stromzähler oder Wärmezähler erfasst. Angelehnt an die Schreibweise von Kilometer pro Stunde wird vereinzelt die Einheit kWh falsch als kW/h angegeben.

Zusammenhang mit anderen Energieeinheiten

Die Wattstunde leitet sich aus der SI-Einheit Joule ab:

  • 1 Wh = 3600 Ws (Wattsekunde) = 3600 Joule = 3,6 Kilojoule (kJ).

Die Einheit Wattstunde wird meistens mit dem dezimalen SI-Vorsatz Kilo verwendet (z. B. bei der Stromabrechnung).

  • 1 Kilowattstunde (kWh) = 1 kW · 1 h = 1000 Watt · 1 h = 1000 Wh = 1000 W · 3600 s = 3,6 · 106 J = 3,6 Megajoule (MJ)

Wenn beispielsweise eine Solaranlage mit der Leistung von einem Kilowatt eine Stunde lang Sonnenlicht in elektrische Energie umwandelt, so entspricht das einer Energie einer Kilowattstunde.

Bei der Angabe der Stromproduktion von Elektrizitätswerken oder des Bedarfs an elektrischer Energie ganzer Länder werden die Vorsätze Mega (M) (für eine Million), Giga (G) (für eine Milliarde) oder Tera (T) (für eine Billion) der entsprechenden Einheit verwendet, um handlichere Zahlenwerte zu erhalten: so entsprechen z. B. 1000 Megawattstunden einer Gigawattstunde (GWh) usw.

Beispiele

Mit der Energie 1 kWh kann man beispielsweise:

  • 50 Stunden an einem Laptop arbeiten (bei einer Leistung von 20 Watt)
  • Etwa elf Minuten lang seinen durchschnittlichen Bedarf an Primärenergie (Leistungsaufnahme in Deutschland im Schnitt etwa 5,5 kW) decken
  • Fünf Stunden am Computer arbeiten (bei einer Leistung von 200 Watt; bei voller Leistung, in der Regel schwankt diese sehr)
  • Sieben Stunden fernsehen (bei einer Leistung von ca. 140 Watt)
  • Rund 15 Stunden fernsehen mit einem modernen Gerät mit Flüssigkristallanzeige (bei einem Leistungsbedarf von rund 65 Watt)
  • 25 Minuten staubsaugen (bei einer Leistung von 2400 Watt)
  • Eine Dreiviertelstunde Haare trocknen (bei einer Leistung von 1400 Watt)
  • Einen Eimer voll Wasser (10,75 Liter) unter normalem Druck von 20 °C auf 100 °C erhitzen
  • Mit einem Pkw mit Verbrennungsmotor rund 1,7 km weit fahren (bei einem typischen Energiebedarf von 6 Liter Benzin bzw. 60 kWh pro 100 km)
  • Mit einem Elektroauto rund 6,7 km weit fahren (bei einem typischen Energiebedarf von 15 kWh pro 100 km)
  • Mit einem Pedelec bei mäßigem Mittreten rund 130 km fahren (bei rund 40 bis 45 km Reichweite einer Batterieladung von 330 Wh)

Zum Vergleich ist die folgende Faustregel für den Energiegehalt von Primärenergieträgern erwähnenswert:

10 kWh ≈ 1 m³ Erdgas ≈ 1 l Öl ≈ 1 l Benzin ≈ 1 kg Kohle ≈ 2 kg Holz ≈ 10 h direktes Sonnenlicht auf 1 m² auf der Erde

wobei je nach Wirkungsgrad von Kraftwerk und Stromleitung nur ca. 40 % beim Verbraucher ankommen.[3]

Obwohl die Einheit kWh hauptsächlich bei elektrischen Verbrauchern oder Heizungen Verwendung findet, lässt sie sich auch mit dem Energieumsatz eines Menschen vergleichen: hierbei entspräche ein für einen erwachsenen Mann (ohne schwere körperliche Arbeit) typischer täglicher Umsatz von 9000 kJ einem Wert von 2,5 kWh. Somit hat er einen Durchschnittsverbrauch von etwa 100 Watt, wobei der umgerechnete pro Kopf Primärenergiebedarf in Deutschland ca. 5000 Watt ist, also das 50-fache. Mit der Energie 1 kWh aus dem Beispiel oben kann ein ca. 80 kg schwerer Mensch 10 km laufen.[4]

Verwandte Einheiten

Megawatttag

Ein Megawatttag (MWd) ist die Energie, die ein Kraftwerk mit einer Leistung von 1 Megawatt an einem Tag liefert. Sie wird in der Energie- und Reaktortechnik verwendet.

$ 1\,\mathrm{MWd} = 10^6 \cdot 24\,\mathrm{Wh} = 86,4 \cdot 10^9\,\mathrm{J} = 24 \,\mathrm{MWh} $

Gigawattjahr

Ein Gigawattjahr (GWa) ist die Energie, die ein Kraftwerk mit der Leistung von 1 Gigawatt in einem Jahr liefert (bei Betrieb ohne Unterbrechungen). Gigawattjahr ist in Deutschland keine gesetzliche Einheit im Messwesen, weil dort das Jahr (Einheitenzeichen: a) keine solche ist.

$ 1\,\mathrm{GWa} \approx 10^6 \,\mathrm{kWa}\cdot 365 \mathrm{\frac{d}{a}}\cdot 24\mathrm{\frac{h}{d}} = 8{,}76\cdot 10^9 \,\mathrm{kWh} = 8{,}76 \,\mathrm{TWh} $

Einzelnachweise

  1. Das Internationale Einheitensystem (SI). Deutsche Übersetzung der BIPM-Broschüre „Le Système international d’unités/The International System of Units (8e edition, 2006)“. In: PTB-Mitteilungen. Band 117, Nr. 2, 2007 (Online Version (PDF-Datei, 1,4 MB)).
  2. aufgrund der EU-Richtlinie 80/181/EWG in den Staaten der EU bzw. dem Bundesgesetz über das Messwesen in der Schweiz
  3. Konrad Mertens: Photovoltaik. Carl Hanser, München 2011, ISBN 978-3-446-42172-1.
  4. Runner's World Kalorien-Kalkulator. Abgerufen am 10. November 2012 (wobei mit 1 kcal = 4,184 kJ = 4184 Ws = 1,162 Wh umzurechnen ist).

Diese Artikel könnten dir auch gefallen



Die letzten News


23.01.2021
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
23.01.2021
Die Entstehung des Sonnensystems in zwei Schritten
W
23.01.2021
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
20.01.2021
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
20.01.2021
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
20.01.2021
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
Aufwändige und in diesem Umfang bis dahin noch nicht realisierte Computersimulationen zur Turbulenz in interstellaren Gas- und Molekülwolken haben wichtige neue Erkenntnisse zu der Frage gebracht, welche Rolle sie bei der Entstehung von Sternen spielt.
20.01.2021
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
25.12.2020
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.
25.12.2020
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.
25.12.2020
Skyrmionen – Grundlage für eine vollkommen neue Computerarchitektur?
Skyrmionen sind magnetische Objekte, von denen sich Forscher weltweit versprechen, mit ihnen die neuen Informationseinheiten für die Datenspeicher und Computerarchitektur der Zukunft gefunden zu haben.
25.12.2020
Mysterien in den Wolken: Große Tröpfchen begünstigen die Bildung kleinerer
Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) berichten die über ihre neuen Erkenntnisse, wie ausfallende große Regentropfen und Eispartikel das Wachstum von Aerosolen begünstigen können, um neue Kondensationskerne oder Eiskeimteilchen in Wolken zu erzeugen.
25.12.2020
Kollidierende Sterne offenbaren grundlegende Eigenschaften von Materie und Raumzeit
Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte den Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums.
25.12.2020
Endgültige Ergebnisse und Abschied vom GERDA-Experiment
Die Zeit des GERDA-Experiments zum Nachweis des neutrinolosen doppelten Betazerfalls geht zu Ende.