Winzige Nanomaschine absolviert erfolgreich Probefahrt

Neues aus der Forschung

Meldung vom 09.04.2018

Wissenschaftler der Universität Bonn und des Forschungszentrums caesar in Bonn haben mit Kollegen aus den USA aus Nanostrukturen eine winzige Maschine konstruiert, die sich auf einem Rad gezielt in eine bestimmte Richtung bewegen kann. Die Forscher verwendeten ringförmige Strukturen aus dem Erbgutmaterial DNA. Die Ergebnisse werden nun im Journal „Nature Nanotechnology“ vorgestellt.


180412-2056_medium.jpg
Julián Valero, Nibedita Pal, Soma Dhakal, Nils G. Walter and Michael Famulok
A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks
Nature Nanotechnology
DOI: 10.1038/s41565-018-0109-z

 
Modell der Nanomaschine: Die beiden ineinandergreifenden Ringe sind gut zu erkennen. In der Mitte befindet sich die T7-RNA-Polymerase.

Zu den Nanomaschinen zählen Strukturen aus komplexen Proteinen und Nukleinsäuren, die aus chemischer Energie gespeist gerichtete Bewegungen vollführen können. Das Prinzip ist aus natürlichen Vorbildern bekannt: Auch Bakterien bewegen sich zum Beispiel mit einer Geißel vorwärts. Das Team der Universität Bonn, des Forschungszentrums Caesar in Bonn und der University of Michigan (USA) nutzte Strukturen aus DNA-Nanoringen. Die zwei Ringe greifen wie bei einer Kette ineinander. „Der eine Ring erfüllt die Funktion eines Rades, der andere treibt es wie ein Motor mit Hilfe von chemischer Energie an“, erklärt Prof. Dr. Michael Famulok vom Life & Medicale Sciences (LIMES)-Institut der Universität Bonn.

Das winzige Gefährt misst gerade einmal rund 30 Nanometer (Millionstel Millimeter). Den „Treibstoff“ stellt die so genannte „T7 RNA Polymerase“ bereit. An den als Motor dienenden Ring gekoppelt synthetisiert dieses Enzym anhand der DNA Sequenz einen RNA-Strang, und nutzt dabei frei werdende chemische Energie für die Drehbewegung des DNA Ringes. „Mit fortschreitender Strecke wächst der RNA-Strang wie ein Bindfaden aus der RNA Polymerase heraus“, berichtet Erstautor Dr. Julián Valero aus Famuloks Team. Diesen immer länger werdenden RNA-Faden, der quasi als Abfallprodukt des Antriebs herausragt, nutzen die Forscher, um das winzige Mobil entlang von Markierungen auf einer Nanoröhrchen-Strecke zu halten.

Länge der Probefahrt beträgt 240 Nanometer

An diesem Faden befestigt legte die Einrad-Maschine auf ihrer Probefahrt etwa 240 Nanometer zurück. „Das war ein erster Aufschlag“, sagt Famulok. „Die Strecke lässt sich beliebig verlängern.“ Doch nicht nur die Weglänge wollen die Forscher als nächsten Schritt ausbauen, es sind auch kompliziertere Herausforderungen auf der Teststrecke geplant. An eingebauten Abzweigungen, soll sich die Nanomaschine entscheiden, welchen Weg sie einschlägt. „Wir können mit unseren Methoden vorbestimmen, welche Abzweigung die Maschine nehmen soll“, blickt Valero in die Zukunft.

Klar, die Wissenschaftler können dem winzigen Gefährt nicht mit bloßem Auge bei der Arbeit zusehen. Mit einem Rasterkraftmikroskop, das die Oberflächenstruktur der Nanomaschine abtastete, konnten die Wissenschaftler die ineinandergreifenden DNA-Ringe sichtbar machen. Darüber hinaus zeigte das Team mit Fluoreszenz-Markierungen, dass sich das „Rad“ der Maschine tatsächlich drehte. Fluoreszierende „Streckenposten“ entlang des Nanoröhrchen-Weges leuchteten auf, sobald das Nano-Einrad sie passierte. Anhand dieser Daten ließ sich auch die Geschwindigkeit des Gefährts berechnen: Eine Umdrehung des Rades dauerte etwa zehn Minuten. Das ist nicht besonders schnell – für die Forscher aber ein großer Schritt. „Die Nanomaschine in die gewünschte Richtung zu bewegen, ist nicht trivial“, sagt Famulok.

Die Bestandteile der Maschine fügen sich automatisch zusammen

Anders als große Maschinen wurde die Nanomaschine der Bonner Wissenschaftler freilich nicht mit dem Schweißbrenner oder dem Schraubenschlüssel zusammengebaut. Die Konstruktion erfolgt nach dem Prinzip der Selbstorganisation. Wie in lebenden Zellen entstehen die gewünschten Strukturen spontan, wenn die entsprechenden Bestandteile zur Verfügung gestellt werden. „Dies funktioniert wie bei einem imaginären Puzzle“, erläutert Famulok. Jedes Puzzleteilchen ist so gestaltet, dass es mit ganz speziellen Partnern wechselwirken kann. Bringt man genau diese Partner in einem Gefäß zusammen, findet jedes Teilchen seinen Wunschpartner und es entsteht automatisch die gewünschte Struktur.

Mittlerweile haben Wissenschaftler weltweit zahlreiche Nanomaschinen und Nanomotoren entwickelt. Aber bei der Methode von Famuloks Team handelt es sich um ein völlig neuartiges Prinzip. „Das ist ein großer Schritt: Es ist nicht einfach, so etwas in der Größenskala von Nanometern verlässlich zu designen und zu realisieren“, sagt der Wissenschaftler. Sein Team will demnächst noch komplexere Nano-Motor-Systeme entwickeln. „Es handelt sich dabei um Grundlagenforschung“, sagt Famulok. „Wo sie hinführt, ist jetzt noch nicht genau abzusehen.“ Mit etwas Phantasie sind als mögliche Anwendungen zum Beispiel Computer denkbar, die logische Schritte anhand von Molekülbewegungen vollziehen. Außerdem könnten winzige Maschinen Medikamente durch die Blutbahn zielgenau zu den Wirkorten bringen. „Aber das sind noch Zukunftsvisionen“, sagt Famulok.


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung