Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten

Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten

Physik-News vom 24.03.2020

Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es Mitarbeitern der AG Festkörperoptik um Professor Alexander Szameit an der Universität Rostock gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen. Ihre Entdeckung wurde jüngst im renommierten Fachblatt „Nature Materials“ veröffentlicht.

Dass es elektronische topologische Isolatoren gibt – Festkörper, die im Innern keinen elektrischen Strom leiten, dafür aber umso besser entlang ihrer Oberfläche – haben 2007 Professor Laurens Molenkamp und sein Team von der Universität Würzburg erstmals im Experiment nachweisen können. Ob es allerdings ein solches System auch für Licht geben könnte, also einen photonischen topologischen Isolator? – „Das ist unmöglich“, zitiert Professor Alexander Szameit, Quantenoptiker am Institut für Physik der Universität Rostock, gern die landläufige Meinung des Fachgebiets. „Das ist erst einmal auch ganz richtig“, führt Szameit aus. „Denn Lichtteilchen gehören zur Klasse der sogenannten Bosonen. Die verhalten sich vollkommen anders als Elektronen, die Ladungsträger des elektrischen Stromes, welche zur Klasse der Fermionen gehören.“


Die gekrümmten Wellenleiter der zwei Gitter überlagen sich und ermöglichen dem Licht nach genau bestimmter Laufzeit eine Wechselwirkung.

Publikation:


Lukas J. Maczewsky, Bastian Höckendorf, Mark Kremer, Tobias Biesenthal, Matthias Heinrich, Andreas Alvermann, Holger Fehske & Alexander Szameit
Fermionic time-reversal symmetry in a photonic topological insulator
Nat. Mater. (2020)

DOI: 10.1038/s41563-020-0641-8


Fermionen seien von Bosonen quantenmechanisch so verschieden, wie Vögel biologisch von Fischen. Was die beiden Teilchenklassen so gravierend unterscheidet, ist die quantenmechanische Eigenschaft des Spins. Diese Eigenschaft könnte man sich als Drehung um die eigene Achse vorstellen, wenn man bei der sprichwörtlichen Unanschaulichkeit der Quantenmechanik die Vorstellung nicht ganz beiseite lassen müsste. Bosonen haben einen ganzzahligen Spin, Fermionen hingegen einen halbzahligen, und das eine lasse sich nicht in das andere verwandeln. Deshalb ließen sich die Spineigenschaften von Lichtteilchen, den Photonen, auch nicht verändern.

Was aber, wenn sich gar nicht die Teilcheneigenschaften ändern müssten, sondern wenn die Eigenschaften des Mediums sich so modifizieren ließen, dass die Photonen gezwungen wären, sich wie Elektronen zu verhalten? Mit einem Schlitten kann man nicht auf Asphalt fahren, aber auf einem Wasser-Seifenfilm rutscht er wie auf Schnee. Warum also nicht einfach den Untergrund so anpassen, sodass der Schlitten sich verhält wie im besten Winter?


Professor Alexander Szameit und Lukas Maczewsky befanden sich während des Publikationsprozesses aufgrund der Covid-19 Pandemie bereits im Home Office.

Professor Holger Fehskes Arbeitsgruppe von der Universität Greifswald befasst sich mit dem abstrakten Verhalten komplexer Quantensysteme. Die Idee seines Teams, den quantenmechanischen Spin als Eigenschaft dem Medium aufzuprägen, faszinierte den experimentellen Physiker Szameit: „Prinzipiell braucht man nur ein Material, bei dem sich die Atomabstände sprunghaft zu bestimmten Zeiten ändern.“ Szameit schmunzelt: „So etwas gibt es natürlich nicht.“ Das Problem löste sein Doktorand Lukas Maczewsky. Er hat die erforderliche zeitliche Veränderung des Materials in eine räumliche Struktur übersetzt, durch die die Photonen mit Lichtgeschwindigkeit rasen. „Genau zu dem Zeitpunkt, zu dem sich die Atomstruktur sprunghaft ändern müsste, haben wir das Licht gezwungen, sich in Lichtwellenleitern um die Kurve zu bewegen und sich dann bis auf eine kritische Distanz zu nähern. Genau dort kann das Licht für eine sehr kurze Zeit wechselwirken“, erläutert Lukas Maczewsky die Überlegung.

Wie aber müssen die Lichtwellenleiter gestaltet sein? Der Quantenphysiker und findige Experimentator Maczewsky hat sich der Lösung Schritt für Schritt angenähert. Er erprobte mathematische Funktionen, mit denen er den Bearbeitungs-Laser programmierte, der ähnlich einer CNC-Maschine die Wellenleiter ins Glas brennt. Zwei Jahre Forschungsarbeit und unzählige Stunden im Laserlabor des Instituts für Physik der Universität Rostock liegen hinter ihm. Seine Mühen wurden belohnt. Zwei geschickt ineinander verwobene Gitter aus kompliziert gebogenen Wellenleitergespinsten, die abschnittsweise einer Sinusquadratfunktion gehorchen, leiten das Licht so durch den Wellenleiter, als bestünde es aus Elektronen und nicht aus Photonen.



Die neuartige Struktur der Wellenleiter führt dazu, dass das Licht die Wellenleiterstruktur an seinem Rand entlang in beide Richtungen völlig ungehindert passieren kann, ohne Rückstreuung oder ähnliche Effekte. Die entscheidende Eigenschaft, die dies erlaubt, kann sonst nur bei Elektronen beobachtet werden: ein halbzahliger Eigendrehimpuls, auch Spin genannt. Dies auf Photonen zu übertragen, ist nur durch einen Trick möglich: der Spin beider Bewegungszustände, die entweder nach links oder nach rechts laufen, ist in der Struktur des Wellenleitersystems kodiert.

„Die gleichzeitige Existenz zweier solcher entgegengesetzer Randzustände ist eine absolute Neuheit in diesem Feld“, so Szameit. Welche Richtung das Licht übrigens einschlage, hänge vom Anfangszustand ab. Das Phänomen, das die Quantenphysiker erstmals nachweisen konnten, lasse sich mit einer perfekten Diode für den Stromfluss vergleichen, bei der die eine Richtung supraleitend sei, die andere aber unendlichen Widerstand zeige, wobei sich zudem diese beiden Richtungen auf Knopfdruck tauschen lassen.



Mit der erfolgreichen Zusammenarbeit zwischen den Physikern der Universitäten Rostock und Greifswald ist die Grundlagenforschung in der Quantenoptik und auf dem dynamischen Gebiet der topologischen Isolatoren wieder ein Stück vorangekommen. Bis sich eines Tages das Puzzle zu einem Quantencomputer fügt, ist noch einiges an Forschung nötig, etwa wie sich ein optischer, idealer Schalter realisieren lasse. Mit der Entdeckung der Physiker in diesem exotischen Gebiet reiner Grundlagenforschung verbindet sich dennoch die Erwartung vielversprechender Anwendungen in der Zukunft. Optische Synapsen, das ist es, wovon die enthusiastischen Quantenoptiker Szameit und Maczewsky träumen. So rasant wie sich die Quantenoptik derzeit weltweit entwickelt, könnte ihr Traum bald wahr werden.

Diese Newsmeldung wurde mit Material der Universität Rostock via Informationsdienst Wissenschaft erstellt



   73 Meldungen
16.10.2020
Quantenoptik - Teilchenphysik
Zepto-Sekunden: Neuer Weltrekord in Kurzzeit-Messung
Im weltweiten Wettlauf um die Messung der kürzesten Zeitspanne liegen jetzt Physikerinnen und Physiker der Goethe-Universität Frankfurt vorn.
13.10.2020
Quantenphysik - Quantenoptik
Meilenstein in der Quantenphysik: Physikern gelingt der kontrollierte Transport von gespeichertem Licht
Patrick Windpassinger und sein Team demonstrieren, wie sich in einer Wolke aus ultrakalten Atomen gespeichertes Licht über ein "optisches Förderband" transportieren lässt.
16.09.2020
Quantenoptik
Flüssiges Wasser bei 170 Grad Celsius - Röntgenlaser enthüllt anomale Dynamik bei ultraschnellem Erhitzen
Mit dem europäischen Röntgenlaser European XFEL hat ein Forschungsteam untersucht, wie sich Wasser unter Extrembedingungen aufheizt.
15.09.2020
Quantenoptik
Einzelphotonen vom Siliziumchip: Forschungsteam entwickelt neuartige Quelle für Quanten-Lichtteilchen
Die Quantentechnologie gilt als überaus zukunftsträchtig: Quantencomputer sollen in einigen Jahren Datenbanksuchen, KI-Systeme und Simulationsrechnungen revolutionieren.
16.07.2020
Quantenoptik - Teilchenphysik
Der leichteste Spiegel der Welt
Physiker haben einen optischen Spiegel entwickelt, der aus nur wenigen hundert Atomen besteht. Es ist der leichteste Spiegel der Welt und der leichteste überhaupt vorstellbare.
14.07.2020
Elektrodynamik - Quantenoptik - Teilchenphysik
Hammer-on – wie man Atome schneller schwingen lässt
Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben.
13.07.2020
Quantenoptik - Teilchenphysik
Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt
Verschmelzung physikalischer und chemischer Methoden für die optische Spektroskopie superschwerer Elemente.
01.07.2020
Quantenoptik - Teilchenphysik
In das Innere der atomaren Materie blicken: Pikoskopie
Wissenschaftlern aus den Arbeitsgruppen von Professor E.
24.04.2020
Elektrodynamik - Quantenoptik
Vermessung der Dynamik von Skyrmionen aus Licht auf ultraglatten Goldplättchen
Im Zentrum eines Wirbels bestehen sehr hohe Drehgeschwindigkeiten, die bei großen Tornados gewaltige Zerstörungskräfte entfalten können.
06.04.2020
Elektrodynamik - Quantenoptik
Wenn Ionen an ihrem Käfig rütteln
In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung.
02.04.2020
Quantenoptik
Unsichtbares sichtbar machen
Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern.
02.04.2020
Festkörperphysik - Quantenoptik
Wie man Schmutz einfach entfernt
Schmutz ist nicht immer gleich Schmutz.
27.03.2020
Quantenoptik
Physiker entwickeln neue Photonenquelle für abhörsichere Kommunikation
Ein internationales Team unter Beteiligung von Prof.
24.03.2020
Quantenoptik
Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten
Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es Mitarbeitern der AG Festkörperoptik um Professor Alexander Szameit an der Universität Rostock gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen.
23.03.2020
Quantenoptik
Forschende beobachten erstmals ultraschnelle Prozesse einzelner Moleküle in flüssigem Helium
In Physical Review Letters beschreiben Experimentalphysiker der TU Graz, wie sich ein Molekül in der schützenden Umgebung einer Quantenflüssigkeit bewegt.
29.01.2019
Quantenoptik - Teilchenphysik
Physiker erzeugen neue Materieform
Unter Mitwirkung der Österreichischen Akademie der Wissenschaften gelang es am japanischen Teilchenbeschleunigerzentrum J-PARC erstmals eine neue Form von Materie mit Anti-Kaonen nachzuweisen. Das berichtet das internationale Forschungsteam nun im Fachjournal „Physics Letters B“.
24.01.2019
Quantenoptik - Teilchenphysik
Wie der Teilchenstrahl seine Struktur bekommt
Die Behandlung von Tumoren mit Protonen gilt als sehr vielversprechend.
23.01.2019
Quantenoptik
Ein neues Zuhause für Ultrakurzzeit-Solitonen
Laserphysiker des Labors für Attosekundenphysik an der Ludwig-Maximilians-Universität und dem Max-Planck-Institut für Quantenoptik erzeugen erstmals dissipative Solitone in passiven Freistrahlresonatoren.
17.01.2019
Elektrodynamik - Quantenoptik
Wie Moleküle im Laserfeld wippen
Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger Dipol induziert.
14.01.2019
Quantenoptik
Neuartiger Schaltkreis für die Quantenphotonik
Physikern der Universität Paderborn ist es erstmals gelungen, Schlüsselbausteine der Quantenphotonik auf einen einzelnen Chip zu integrieren und damit die Bündelung zweier einzelner Photonen – auch bekannt als Hong-Ou-Mandel-Experiment – zu demonstrieren.
21.12.2018
Quantenoptik
Moleküle aus mehreren Blickwinkeln
Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionsspektroskopie im sog.
17.12.2018
Quantenoptik
Neue Laserstrahlen für die Glasbearbeitung – geformt nach Kundenwunsch
Glas mit beliebigen Konturen trennen? Ohne Staub und ohne Nacharbeit an den Kanten? Das geht sogar schnell mit speziell geformten ultrakurzen Laserpulsen.
13.12.2018
Quantenoptik
Quantenkryptographie ist bereit für das Netz
Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.
12.12.2018
Klassische Mechanik - Quantenoptik
Bose-Einstein-Kondensate können Gravitationswellen derzeit wohl kaum nachweisen
Die von Schwarzen Löchern in den Tiefen des Weltraums ausgelösten Gravitationswellen erreichen zwar durchaus die Erde.
06.12.2018
Festkörperphysik - Quantenoptik
Drei Komponenten auf einem Chip
Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer.
05.12.2018
Quantenoptik - Teilchenphysik
Lichtblitze aus dem Plasmaspiegel
Physiker des Max-Planck-Instituts für Quantenoptik, der Ludwig-Maximilians- Universität München und der Umeå Universität haben relativistische Plasmen aus schnellen Elektronen erstmals genutzt, um intensive, isolierte Attosekunden-Lichtblitze zu erzeugen.
23.11.2018
Quantenoptik - Teilchenphysik
Auf dem Weg zum Beschleuniger auf dem Mikrochip
Elektrotechniker am Fachgebiet Beschleunigerphysik der TU Darmstadt entwickeln ein Konzept eines lasergetriebenen Elektronenbeschleunigers, der so klein ist, dass er auf einem Siliziumchip hergestellt werden kann und kostengünstig und vielseitig einsetzbar ist.
02.11.2018
Quantenphysik - Quantenoptik
Komplexer Quantenteleportation einen Schritt näher
Für zukünftige Technologien wie Quantencomputer und Quantenverschlüsselung ist die experimentelle Beherrschung von komplexen Quantensystemen unumgänglich.
30.10.2018
Quantenphysik - Quantenoptik
Rydberg-Systeme als neue Plattform für Optische Quantenkommunikation und Quantennetzwerke
Durchbruch in der Quantenforschung: Mit elektromagnetisch induzierter Transparenz lassen sich starke Wechselwirkungen von Rydberg-Atomen auf Licht übertragen.
29.10.2018
Quantenoptik
Kleinste Lichtportionen auf Knopfdruck: Uni Stuttgart entwickelt neuartige Einzelphotonenquelle
Forschende des Zentrums für Integrierte Quantenwissenschaft und technologie Baden-Württemberg IQST am 5.
29.10.2018
Quantenoptik - Teilchenphysik
Weyl-Fermionen im Spotlight
Forscher aus der Theorieabteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) in Hamburg und der North Carolina State University in den USA haben gezeigt, dass der lang gesuchte semi-metallische, magnetische Weyl-Zustand mit ultraschnellen Laserpulsen in magnetischen Materialien, den sogenannten Pyrochlor-Iridaten, erzeugt werden kann.
24.10.2018
Quantenphysik - Quantenoptik
Mehr Torerfolge beim Quantenfußball
Physiker der Universität Bonn haben eine Methode vorgestellt, die sich eventuell zur Herstellung so genannter Quanten-Repeater eignet.
18.10.2018
Quantenoptik - Teilchenphysik
Die Erforschung ultrakalter Atome im Raketen-Labor
Wissenschaftler der Leibniz Universität Hannover veröffentlichen erste Ergebnisse von MAIUS-1, einer der komplexesten je durchgeführten Raketenmissionen.
18.10.2018
Astrophysik - Quantenoptik
Erstes Bose-Einstein-Kondensat im Weltraum erzeugt
Physiker schaffen Grundlagen für präzisen Test des Einstein’schen Äquivalenzprinzips – Aktuelle Veröffentlichung in der Fachzeitschrift Nature
12.10.2018
Quantenoptik
Materiezustände durch Licht verändern
Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller Zustand – die sogenannte Suprafluidität – hergestellt werden konnte.
02.10.2018
Quantenoptik
Erste Experimente an neuem Röntgenlaser enthüllen unbekannte Struktur von Antibiotika-Killer
Eine große internationale Forschergruppe unter DESY-Führung hat die Ergebnisse der ersten wissenschaftlichen Experimente an Europas neuem Röntgenlaser European XFEL veröffentlicht.
18.09.2018
Plasmaphysik - Quantenoptik
Extrem klein und schnell: Laser zündet heißes Plasma
Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab.
09.08.2018
Quantenoptik
Quantenketten in Graphen-Nanobändern
E
09.08.2018
Quantenoptik - Teilchenphysik
Langsam, aber effizient
Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
26.07.2018
Quantenoptik - Teilchenphysik
Starke Kopplung durch Spin-Trio
Um Qubits für Quantencomputer weniger störanfällig zu machen, benutzt man vorzugsweise den Spin zum Beispiel eines Elektrons. ETH-Forscher haben nun eine Methode entwickelt, mit der ein solches Spin-Qubit stark an Mikrowellen-Photonen gekoppelt werden kann.
24.07.2018
Quantenoptik - Teilchenphysik
Mit Quantencomputer chemische Bindungen simuliert
Eine internationale Forschungsgruppe hat in Innsbruck die weltweit erste quantenchemische Simulation auf einem Ionenfallen-Quantencomputer durchgeführt.
06.07.2018
Quantenoptik - Teilchenphysik
Bindungsbruch: Mitmachen oder nicht
Ob und wie sich chemische Reaktionen durch gezielte Schwingungsanregung der Ausgangsstoffe beeinflussen lassen, untersuchen Physiker um Roland Wester an der Universität Innsbruck.
29.06.2018
Quantenphysik - Quantenoptik
Neue Methoden der 2D-Spektroskopie
Mit optischer Spektroskopie können Energiestruktur und dynamische Eigenschaften komplexer Quantensysteme untersucht werden. Forscher der Universität Würzburg zeigen zwei neue Ansätze der kohärenten zweidimensionalen Spektroskopie.
28.06.2018
Quantenoptik
Chemische Reaktionen im Licht ultrakurzer Röntgenpulse aus Freie-Elektronen-Lasern
Ultrakurze, hochintensive Röntgenblitze öffnen das Tor zu den Grundlagen chemischer Reaktionen.
28.06.2018
Quantenoptik - Teilchenphysik
Ein einzelnes Atom vermittelt starke Wechselwirkungen zwischen Lichtquanten
Physiker am MPQ in Garching beobachten in einem Atom-Resonator-System starke Wechselwirkungen zwischen verschiedenfarbigen Photonen.
27.06.2018
Quantenoptik - Teilchenphysik
Nobelium im Laserlicht
Die Größe und Form künstlich hergestellter Atomkerne mit mehr als 100 Protonen war experimentell bisher nicht direkt zugänglich.
26.06.2018
Quantenoptik - Thermodynamik
Neue Form von Chaos entdeckt
Die Entdeckung eines neuen Typs von Chaos durch Chemnitzer Physiker findet weltweite Beachtung – Potentielle Anwendung für Kommunikationstechnik, Kryptographie und Datenverarbeitung
26.06.2018
Festkörperphysik - Quantenoptik
Asymmetrische Nano-Antennen liefern Femtosekunden-Pulse für Optoelektronik
Einem Team unter Leitung der TUM-Physiker Alexander Holleitner und Reinhard Kienberger ist es erstmals gelungen, mit Hilfe nur wenige Nanometer großer Metallantennen ultrakurze, elektrische Pulse auf einem Chip zu erzeugen, diese dann einige Millimeter weiter wieder kontrolliert auszulesen.
20.06.2018
Quantenoptik
Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen.
29.05.2018
Festkörperphysik - Quantenphysik - Quantenoptik - Teilchenphysik
Ultradünner Supraleiter ebnet Weg zu neuen quantenelektronischen Instrumenten
Forschern des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) ist es gemeinsam mit Kollegen aus Karlsruhe, London und Moskau gelungen, erstmals einen kohärenten Quanteneffekt mit einem bei tiefen Temperaturen kontinuierlich supraleitenden Nanodraht experimentell nachzuweisen und damit einen neuen Quantendetektor zu realisieren.
22.05.2018
Elektrodynamik - Festkörperphysik - Quantenoptik
Faserlaser mit einstellbarer Wellenlänge
Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie.
17.05.2018
Quantenoptik - Teilchenphysik
Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt
Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5.
14.05.2018
Quantenoptik - Thermodynamik
Schnellster Wasserkocher der Welt – 100.000 Grad in 75 billiardstel Sekunden
Forscher erzeugen und untersuchen exotischen Zustand von Wasser per Röntgenlaser.
14.05.2018
Astrophysik - Quantenoptik
Frequenzstabile Lasersysteme für den Weltraum
JOKARUS-Experiment auf Höhenforschungsrakete erfolgreich durchgeführt. Grundstein für Laser-Abstandsmessungen mit allerhöchster Präzision und Wegbereiter für optische Satellitensysteme zur Navigation.
02.05.2018
Quantenoptik
Physiker der Universität Regensburg schicken Elektronen auf rasante Talfahrt
Internationales Physiker-Team schaltet Quantenbits schneller als eine Lichtschwingung
23.04.2018
Elektrodynamik - Quantenoptik
Moleküle brillant beleuchtet
Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert.
18.04.2018
Elektrodynamik - Festkörperphysik - Quantenoptik
Laser erzeugt Magnet – und radiert ihn wieder aus
Mit einem Laserstrahl in einer Legierung magnetische Strukturen zu erzeugen und anschließend wieder zu löschen – das gelang Forschern vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Kooperation mit dem Helmholtz-Zentrum Berlin (HZB) und der Universität von Virginia in Charlottesville, USA.
17.04.2018
Quantenoptik
Laserbasiertes Röntgenbild im Eiltempo
Garchinger Laserphysiker haben mit Hilfe einer laserbasierten Röntgentechnik erstmals eine Knochenprobe innerhalb weniger Minuten rekonstruiert. Dadurch rückt eine medizinische Anwendung der neuen Technologie näher.
16.04.2018
Festkörperphysik - Quantenoptik
Ein Wimpernschlag vom Isolator zum Metall
Dank der geschickten Kombination neuartiger Technologien lassen sich vielversprechende Materialien für die Elektronik von morgen untersuchen.
10.04.2018
Festkörperphysik - Quantenoptik
Fraunhofer INT und Fraunhofer Space auf der ILA 2018: Bestrahlungstests und Satellitentechnologie
Auf der ILA 2018 in Berlin präsentiert das Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen INT am Stand 202 in Halle 4 den Nachbau einer Co-60-Bestrahlungsanlage und bestrahlte Materialproben, die den Einfluss von Strahlung auf verschiedene Materialien veranschaulichen.
06.04.2018
Festkörperphysik - Quantenoptik
Winzige Strukturen – große Wirkung
Materialwissenschaftler der Universität Jena gestalten Oberfläche winziger, gekrümmter Kohlenstofffasern durch Laserstrukturierung
21.03.2018
Quantenoptik
Ultrakurze Laserpulse machen Treibhausgas reaktionsfreudig
Es ist ein lang gehegter Traum: Das träge Treibhausgas Kohlendioxid aus der Atmosphäre entfernen und es als Grundstoff für die chemische Industrie nutzen.
26.02.2018
Quantenphysik - Quantenoptik
Auf dem Weg zum Quantencomputer: Weltweit erstes schaltbares Quanten-Metamaterial untersucht
Quantencomputer können eine große Zahl an Rechenoperationen gleichzeitig ausführen.
26.02.2018
Optik - Quantenphysik - Quantenoptik
Quantenbits per Licht übertragen
Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht
14.11.2017
Quantenoptik
Wesentliche Quantencomputer-Komponente um zwei Größenordnungen verkleinert
Forscher am IST Austria haben kompakte nichtmagnetische Photonenrouter entwickelt. Die mikrometergroßen Bauelemente leiten Mikrowellenphotonen unidirektional und können Qubits vor schädlichem Rauschen schützen.
06.11.2017
Quantenoptik
Quantencomputer kommen in Bewegung
Die wissenschaftliche Arbeit von Kaufmann et al. ist im internationalen renommierten Journal Physical Review Letters 119, 150503 erschienen und stellt einen wichtigen Meilenstein zur Realisierung eines zukünftigen Quantencomputers dar.
22.08.2017
Astrophysik - Quantenoptik
Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) konnten mit Kollegen aus Deutschland und den USA zeigen, dass sich in den Eisriesen unseres Sonnensystems „Diamantregen“ bildet.
03.08.2017
Quantenoptik - Teilchenphysik
Mit Quantencomputern komplexe chemische Prozesse aufklären
Wissenschaft und Computerindustrie setzen grosse Hoffnungen auf Quantencomputer, mögliche Anwendungen beschreiben sie aber meist nur vage. Anhand eines konkreten Beispiels zeigen Wissenschaftler der ETH Zürich nun, was künftige Quantencomputer tatsächlich zu leisten vermögen.
03.08.2017
Quantenoptik
Ruckartige Bewegung schärft Röntgenpulse
Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“.
27.07.2017
Elektrodynamik - Quantenoptik
Physiker designen ultrascharfe Pulse
Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.
30.06.2017
Quantenoptik
Der schärfste Laserstrahl der Welt
Physikalisch-Technische Bundesanstalt entwickelt einen Laser mit nur 10 mHz Linienbreite
30.06.2017
Quantenoptik
Laser World of Photonics 2017: Fraunhofer IOF präsentiert neue Technologie für Quantenkommunikation
In naher Zukunft wird Quantenkryptographie ein wichtiges Thema für die sichere Übertragung von Kommunikation spielen.
18.11.2015
Quantenphysik - Quantenoptik
Qualitätskontrolle für Quantensimulatoren
Wissenschaftler der FU Berlin, der Universidade Federal do Rio de Janeiro und des MPQ entwickeln neues Verfahren für die Zertifizierung photonischer Quantensimulatoren

News der letzten 7 Tage     2 Meldungen


21.10.2020
Milchstraße - Teilchenphysik
Atomarer Wasserstoff als archäologischer Nachweis für die Geschichte der Milchstraße
Eine Gruppe von Astronomen unter der Leitung von Juan Soler vom MPIA hat ein komplexes Netzwerk aus Filamenten aus atomarem Wasserstoffgas gefunden, das die Milchstraße durchdringt.
16.10.2020
Quantenoptik - Teilchenphysik
Zepto-Sekunden: Neuer Weltrekord in Kurzzeit-Messung
Im weltweiten Wettlauf um die Messung der kürzesten Zeitspanne liegen jetzt Physikerinnen und Physiker der Goethe-Universität Frankfurt vorn.