Isotopenmessungen an Luftfiltern belegen zivilen Hintergrund eines nicht-deklarierten nuklearen Unfalls

Isotopenmessungen an Luftfiltern belegen zivilen Hintergrund eines nicht-deklarierten nuklearen Unfalls

Physik-News vom 09.06.2020

Studie der Leibniz Universität Hannover und der Westfälischen Wilhelms-Universität untersucht radioaktive Wolke.

Eine mysteriöse Wolke aus radioaktivem Ruthenium-106, die 2017 über Europa zog, beschäftigt noch immer die Strahlenschutzeinrichtungen Europas. Kein Land hat sich bisher als Verursacher bekannt. In einer aktuellen Studie der Leibniz Universität Hannover und der Westfälischen Wilhelms-Universität Münster, die soeben in Nature Communications erschien, konnte gezeigt werden: die Wolke stammte aus zivilen nuklearen Tätigkeiten und hatte keinen militärischen Hintergrund.


Die Verhältnisse der einzelnen Ruthenium-Isotope entsprechen dem Fingerabdruck einer zivilen Quelle, konkret der Signatur von abgebranntem Kernbrennstoff aus einem AKW.
Das hier identifizierbare Kraftwerk ist nicht Gegenstand der Studie. (Anm. der Redaktion)

Publikation:


T. Hopp, D. Zok, T. Kleine, G. Steinhauser
Non-natural ruthenium isotope ratios of the undeclared 2017 atmospheric release consistent with civilian nuclear activities
Nature Communications

DOI: 10.1038/s41467-020-16316-3



Im Herbst des Jahres 2017 zog eine radioaktive Wolke von radioaktivem Ruthenium-106 über Europa. Die Konzentrationen waren zwar nicht gesundheitsschädigend, aber immerhin rund 100-mal höher als jene in der Wolke, die nach Fukushima über Europa zog. Da bislang keine Regierung die Verantwortung übernommen hat, konnte auch ein militärischer Hintergrund nicht gänzlich ausgeschlossen werden.

Eine Unterscheidung von zivilen oder militärischen Quellen ist allein mit Radioaktivitätsmessungen nicht möglich. In enger Kooperation zwischen der Leibniz Universität Hannover (Institut für Radioökologie und Strahlenschutz) und der Westfälischen Wilhelms-Universität Münster (Institut für Planetologie) gelang es erstmals, die zusammen mit dem radioaktiven Ruthenium freigesetzten stabilen Ruthenium-Isotope in Luftfiltern zu quantifizieren und in die Gesamtbetrachtung einzubinden.


Filterübersicht.

Für den Erfolg der Studie war es nötig, das gewohnte fachliche Umfeld zu verlassen: „Normalerweise messen wir Ruthenium-Isotope, um die Entstehungsgeschichte der Erde zu erforschen“, sagt Prof. Dr. Thorsten Kleine von der Westfälischen Wilhelms-Universität Münster und zeigt auf, dass die für die Planetologie entwickelten Methoden auch dieses ungelöste Rätsel aufklären konnten. Die besondere Herausforderung lag darin, dass die Mengen an Ruthenium aus „nuklearem Hintergrund“ in winzigsten Mengen und zudem verdünnt mit natürlich vorkommendem stabilem Ruthenium vorlagen.

Durch exakte chemische Abtrennung der Rutheniumfraktion aus den Luftfiltern und anschließenden massenspektrometrischen Hochpräzisionsmessungen gelang es, den Anteil an stabilem Ruthenium aus der nuklearen Quelle fassbar zu machen. Die Verhältnisse der einzelnen Ruthenium-Isotope entsprechen dem Fingerabdruck einer zivilen Quelle, konkret der Signatur von abgebranntem Kernbrennstoff aus einem AKW. Ein schlüssiges Szenario für die Geschehnisse des Herbstes 2017 wäre demnach die Freisetzung von Ruthenium aus einer Wiederaufbereitungsanlage für Kernbrennstoff. Ein militärischer Hintergrund (Produktion von waffenfähigem Plutonium) kann hingegen ausgeschlossen werden.



Die hohe Präzision der Messungen ermöglicht sogar noch weitere Schlussfolgerungen. Professor Georg Steinhauser von der Leibniz Universität Hannover präzisiert: „Der im Luftfilter gefundene Isotopen-Fingerabdruck zeigt keine Ähnlichkeit mit dem Kernbrennstoff von gängigen westlichen Druck- oder Siedewasserreaktoren, ist jedoch konsistent mit der Isotopensignatur bestimmter russischer Druckwasserreaktoren des Typs WWER, von denen weltweit rund 20 in Betrieb sind.“

Diese Newsmeldung wurde mit Material der Leibniz Universität Hannover via Informationsdienst Wissenschaft erstellt



   3 Meldungen
02.07.2020
Kernphysik - Plasmaphysik
Sanfter Wandkontakt – das passende Szenario für ein Fusionskraftwerk
Eine aussichtsreiche Betriebsweise für das Plasma eines späteren Kraftwerks wurde jetzt an der Fusionsanlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching entwickelt.
09.06.2020
Kernphysik
Isotopenmessungen an Luftfiltern belegen zivilen Hintergrund eines nicht-deklarierten nuklearen Unfalls
Studie der Leibniz Universität Hannover und der Westfälischen Wilhelms-Universität untersucht radioaktive Wolke.
27.05.2020
Kernphysik
Radioaktive Moleküle eignen sich als Mini-Labore
Radioaktive Moleküle eignen sich als Miniatur-Laboratorien, mit denen sich grundlegende Eigenschaften von Elementarteilchen und Atomkernen studieren lassen – das ist das Ergebnis eines Experiments, über das ein internationales Forschungskonsortium in der aktuellen Ausgabe des Wissenschaftsmagazins „Nature“ berichtet.

News der letzten 7 Tage     3 Meldungen


19.11.2020
Sterne - Astrophysik - Physikgeschichte
Entfernungen von Sternen
1838 gewann Friedrich Wilhelm Bessel das Wettrennen um die Messung der ersten Entfernung zu einem anderen Stern mit Hilfe der trigonometrischen Parallaxe - und legte damit die erste Entfernungsskala des Universums fest.
19.11.2020
Plasmaphysik - Quantenoptik
Was Sterne zum Leuchten bringt
Internationales Forschungsteam der Universitäten in Berkeley, Madrid und Jena sowie des Institut Polytechnique de Paris beobachtet in Laborversuchen nichtlineare Ionisationsvorgänge in heißen dichten Plasmen.
19.11.2020
Elektrodynamik - Teilchenphysik
Einbahnstraße für Elektronen
Ein internationales Wissenschaftlerteam hat experimentell beobachtet, dass konischen Durchschneidungen - ein quantenmechanisches Phänomen - für einen ultraschnellen, gerichteten Energietransport zwischen benachbarten Molekülen eines Nanomaterials sorgen.