Forscher entdecken neue Form von Eis

Neues aus der Forschung

Meldung vom 18.04.2018

Eis ist nicht gleich Eis. Abhängig von Druck und Temperatur bilden Wassermoleküle unterschiedliche Strukturen aus, insgesamt siebzehn kristalline Eisformen konnten bisher nachgewiesen werden. Ein Team um den Innsbrucker Chemiker Thomas Lörting hat gemeinsam mit Forschern der TU Dortmund nun eine weitere Eisform entdeckt. Sobald die Kristallstruktur bestimmt ist, könnte es als Eis XVIII in die Lehrbücher eingehen.


180420-2317_medium.jpg
 
Modell von Eis VI, die großen roten und blauen Kugeln stellen Sauerstoff-Atome, die kleinen Kugeln Wasserstoff-Atome dar.
Tobias M. Gasser, Alexander V. Thoeny, Lucie J. Plaga, Karsten W. Köster, Martin Etter, Roland Böhmer and Thomas Loerting
Experiments indicating a second hydrogen ordered phase of ice VI
Chem. Sci., 2018
DOI: 10.1039/C8SC00135A


Während Eis I als Schnee und Eis auf der Erde zu finden ist, findet man auf der Oberfläche unseres Planeten - außer in Forschungslaboren - keine anderen Eisformen. Viele Eisformen entstehen in den Weiten des Weltalls unter besonderen Druck- und Temperaturverhältnissen. Eis VI wurde auf Himmelskörpern wie dem Jupitermond Ganymed indirekt nachgewiesen. Dort sorgen hunderte Kilometer dicke Eisschichten für die notwendigen Druckverhältnisse.

Eis VI gibt es aber auch im Inneren der Erde, nämlich im oberen Erdmantel in 200 bis 500 Kilometern Tiefe bei Temperaturen oberhalb von null Grad Celsius, wie Einschlüsse in Diamanten belegen. Obwohl diese Eisform als kristallin bezeichnet wird, handelt es sich bei Eis VI eigentlich um einen sogenannten frustrierten Kristall, weil hier nur die Sauerstoffatome periodisch angeordnet sind, während die Wasserstoffatome chaotisch orientiert sind. Wird Eis VI abgekühlt, so können sich auch die Wasserstoffatome periodisch anordnen, und es entsteht eine neue, geordnete Eisform, genannt Eis XV. Für beinahe alle ungeordneten Eisformen wurden in der Vergangenheit auch entsprechende geordnete Eisformen nachgewiesen.

„Aus Eis VI hat Christoph Salzmann 2009 hier in Innsbruck erstmals die geordnete Eisform Eis XV hergestellt“, erzählt Thomas Lörting vom Institut für Physikalische Chemie der Universität Innsbruck. Durch einen veränderten Herstellungsprozess ist es dem Team um Lörting nun gelungen, eine zweite geordnete Form für Eis VI zu erzeugen. Wie umfangreiche Analysen zeigen, die gemeinsam mit dem Team um Roland Böhmer an der TU Dortmund durchgeführt wurden, weist diese Eisform eine neue Art von Ordnung auf.

Noch ist es den Wissenschaftlern nicht gelungen, deren Kristallstruktur zu bestimmen. Sobald diese gefunden ist, könnte die neu entdeckte Form als Eis XVIII Eingang in die Lehrbücher finden. Im Gegensatz zum bekannten Herstellungsprozess haben die Innsbrucker Forscher die Abkühlrate deutlich verlangsamt und den Druck auf rund 20 kbar erhöht. Mit dieser Methode ist es erstmals gelungen, in einer gegebenen periodischen Anordnung der Sauerstoffatome die Wasserstoffatome in einer zweiten Art und Weise anzuordnen.

„Mit unserer Methode ist es möglich, die Ordnung der Wasser-Dipole und damit die Eigenschaften des Eises zu steuern. Die Dielektrizitätskonstante dieser Eisformen kann sich zum Beispiel um das Hundertfache unterscheiden“, sieht Thomas Lörting auch Potential für die Materialwissenschaften.

Die Vielfalt des Eises

Die atomare Struktur, insbesondere die genauen Positionen der Wasserstoffatome, zu ermitteln ist nicht einfach, denn Wasserstoff ist sehr leicht und kann sowohl mit Röntgen- als auch Neutronenbeugungsmethoden nur sehr schwer eindeutig positioniert werden. Die Innsbrucker Chemiker wollen deshalb in Zukunft einen Trick anwenden und das gleiche Eis mit Wassermolekülen aus Sauerstoff und Deuterium herstellen. Die exakten Positionen des auch als schwerer Wasserstoff bekannten Deuterium im Kristallgitter könnten mittels Neutronenbeugung nachgewiesen und so die Wasserstoffordnung in der neuen Eisphase bestimmt werden. „Und mit unserem Know-how entstehen in den Laboren vielleicht bald schon viele weitere Abwandlungen von Wassereis“, blickt Thomas Lörting bereits in die Zukunft.

Die Arbeiten entstanden im Rahmen der Forschungsplattform für Material- und Nanowissenschaften der Universität Innsbruck und wurden vom Österreichischen Wissenschaftsfonds FWF und der Deutschen Forschungsgemeinschaft DFG finanziell unterstützt.


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung