Blick in komplexe Lichtwellenformen

Neues aus der Forschung

Meldung vom 30.06.2017

Mit einer neuen Methode lässt sich erstmals erfassen, wie sich das elektrische Feld von schwacher Strahlung bewegt


170630-1023_medium.jpg
 
Das elektrische Feld bewegt sich in komplexen Bahnkurven, während sich ein Lichtpuls ausbreitet.
Grafik: Giuseppe Sansone
P. A. Carpeggiani et al. 2017. Vectorial optical field reconstruction by attosecond spatial interferometry. Nature Photonics
DOI: 10.1038/nphoton.2017.73

Einem internationalen Forschungsteam unter der Leitung von Prof. Dr. Giuseppe Sansone vom Physikalischen Institut der Universität Freiburg ist es erstmals gelungen, die komplexe Entwicklung des elektrischen Feldes von schwachen Lichtpulsen vollständig zu charakterisieren. Das Team hat seine Ergebnisse im Fachjournal „Nature Photonics“ veröffentlicht.

Lichtpulse sind elektromagnetische Wellen. Ihre Eigenschaften wie etwa Schwingungsrichtung, Dauer und Intensität hängen davon ab, wie sich ihr elektrisches und ihr magnetisches Feld räumlich und zeitlich entwickeln. Diese beiden Vektoren können in komplexen Bahnkurven verlaufen, während sich ein Lichtpuls ausbreitet – sie können sich zum Beispiel entlang eines Kreises drehen, eine Ellipse oder eine beliebige Mischkombination beschreiben. Die Bewegung erfolgt auf der Zeitskala von einigen Hundert Attosekunden, was viel schneller ist, als jedes herkömmliche elektronische oder optoelektronische Messgerät erfassen kann: Eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde.

Um dennoch beobachten zu können, wie sich das elektrische Feld bewegt, hat das Team eine Methode entwickelt, bei der so genannte Attosekunden-Laser zum Einsatz kommen. „Mit diesem neuartigen Werkzeug konnten wir Elektronen als Wellenpakete, die nur wenige Hundert Attosekunden dauern, erzeugen“, erklärt Sansone. Während ihrer Bewegung sind Elektronen äußerst empfindlich gegenüber äußeren Störungen. Die Wissenschaftlerinnen und Wissenschaftler haben diese Eigenschaft ausgenutzt, um die Bahnkurven der Elektronen mit schwachen sichtbaren Lichtpulsen zu modifizieren. Daraufhin haben sie gemessen, wie sich diese Kurven verändert haben, und daraus die Intensität und die Richtung des elektrischen Feldes abgeleitet. „Mit unserer Methode wird es in Zukunft möglich sein, eine vollständige Charakterisierung der elektronischen Bewegung in Festkörpern zu erhalten, indem man das von ihrer Oberfläche reflektierte, sichtbare Licht misst“, sagt Sansone.

Forscherinnen und Forscher der Universität Jena, des Max-Planck-Instituts für Kernphysik in Heidelberg, der Physikalisch-Technischen Bundesanstalt in Braunschweig sowie des Politecnico in Mailand und des Istituto di Fotonica e Nanotecnologie in Padua/Italien haben wesentlich zu diesen Ergebnissen beigetragen.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung