Astronomen werden Zeugen der Geburt eines Planeten

Astronomen werden Zeugen der Geburt eines Planeten

Physik-News vom 02.07.2018
 

Wissenschaftler des Max-Planck-Instituts für Astronomie (MPIA) in Heidelberg und des Konsortiums des SPHERE-Instruments am Very Large Telescope der Europäischen Südsternwarte (ESO) in Chile haben einen extrem jungen Exoplaneten im Stadium seiner Entstehung entdeckt und charakterisiert. Der Gasriese mit der Bezeichnung PDS 70 b wurde in einer Lücke der proto­planetaren Scheibe des Sterns PDS 70 nachgewiesen. Damit befindet sich PDS 70 b noch in der Umgebung seiner Entstehung und dürfte nach wie vor neue Materie auf sich ziehen. Der Planet bietet damit die einzigartige Gelegenheit, Entstehungsmodelle von Planeten zu testen und etwas über die frühe Geschichte des Sonnensystems zu lernen.

Die Suche nach Exoplaneten hat bislang etwa 3800 Exemplare mit unterschiedlichsten Größen, Massen sowie Abständen von ihren Muttersternen zutage gefördert. Wie sie entstehen, weiß man aber nicht genau. Zwar verfügen die Forscher über Theorien und Modelle möglicher Entstehungs-Szenarien. Jedoch war es bislang kaum möglich, Planeten im Zustand ihrer Entstehung nachzuweisen, den Entstehungsprozess direkt zu untersuchen und seine Eigenschaften mit den Berechnungen der Modelle zu vergleichen.


Nah-Infrarot-Aufnahme der PDS70-Scheibe aufgenommen mit dem SPHERE-Instrument. Der junge Exoplanet PDS 70 b ist deutlich als helles Signal am inneren Rand der Lücke (dunkler Bereich) zu erkennen. Die vom Zentralstern ausgehende Emission wurde ausgeblendet. Der Balken rechts unten zeigt den linearen Maßstab des Bildes in einer Entfernung von 370 Lichtjahren an.

Publikation:


Keppler et al. und Müller et al.
Keppler et al.: Discovery of a substellar companion within the gap of the transition disk around PDS 70
Müller et al.: Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk

Astronomy & Astrophysics

Genau das ist Astronomen des Max-Planck-Instituts für Astronomie (MPIA) in Heidelberg und des Konsortiums des SPHERE-Instruments am Very Large Telescope der Europäischen Südsternwarte (ESO) nun gelungen. Der Planet PDS 70 b wurde in einer Entfernung von 22 Astronomischen Ein­hei­ten (AE) von seinem Zentralgestirn PDS 70 entdeckt. Er ist damit 22 Mal soweit von der Sonne entfernt wie die Erde. „Wir haben uns für unsere Untersuchung mit PDS 70 einen Stern ausgesucht, bei dem man bereits vermutete, dass dort ein junger Planet seine Kreise ziehen könnte“, erzählt Miriam Keppler, Doktorandin am MPIA und Erstautorin des Fachartikels, der die Entdeckung schildert.


Spektrum des jungen Planeten PDS 70 b. Es wurde durch die Kombination von Beobachtungen mit ESO/SPHERE und NACO gewonnen und durch Daten aus dem Gemini/NICI-Archiv (Punkte und Quadrate mit Fehlerbalken) ergänzt. Die schwarze Linie zeigt ein atmosphärisches Modell, das die Messungen am besten beschreibt. Daraus wurden Masse und Temperatur des Planeten abgeleitet. Die Achsen bezeichnen die Wellenlänge (horizontal) und die gemessene Intensität (vertikal).

Scheibe um einen jungen Stern

PDS 70, ein 5,4 Millionen Jahre junger so genannter T-Tauri-Stern, ist von einer protoplanetaren Scheibe aus Gas und Staub umgeben, die 130 AE breit ist. Zum Vergleich: Der äußere Rand des Sonnensystems, der Kuipergürtel, reicht nur bis etwa 50 AE. Solche Scheiben bestehen aus Material, das nach der Entstehung des Sterns übrig blieb. Die zirkumstellare Scheibe um PDS 70 weist eine große Lücke auf. Man vermutet, dass solch eine Lücke typischerweise dadurch entsteht, dass ein junger Riesenplanet auf seiner Bahn um den Mutterstern Schei­ben­ma­te­rie aufsammelt. Durch die Wechselwirkung mit der Scheibe verändert er dabei langsam seinen Ab­stand zum Zentralgestirn. In dieser Weise räumt er allmählich eine größere Zone in der Scheibe frei.

In einer anschließenden Untersuchung unter der Leitung von André Müller konnte die Gruppe der Astronomen ein spektakuläres Bild des PDS 70-Systems erhalten. Auf dieser Aufnahme ist der Planet am inneren Rand des Scheibenspalts eindeutig erkennbar. Er läuft einmal innerhalb von etwa 120 Jahren um seinen Mutterstern um. Ein Spektrum von PDS 70 b erlaubte es den Astronomen, seine atmosphärischen und physikalischen Eigenschaften zu bestimmen. „Diese Entdeckung bietet uns eine beispiellose Möglichkeit, theoretische Modelle der Planetenbildung zu testen“, erklärt Dr. Müller begeistert.

Ein junger Riesenplanet

Tatsächlich zeigt die Analyse, dass PDS 70 b ein riesiger Gasplanet mit mehreren Jupitermassen und einer Temperatur von etwa 1200 Kelvin ist. Er ist damit ungleich heißer als jeder Planet in unserem Sonnensystem. PDS 70 b ist jünger als der zentrale Stern und dürfte nach wie vor wachsen. Die Daten zeigen außerdem, dass der Planet von Wolken umgeben ist, die die Strahlung des Planetenkerns und seiner Atmosphäre modifizieren. „Aufgrund der neuen Entfernungsdaten, die der Gaia-Satellit geliefert hat, mussten wir unsere Zahlen noch einmal korrigieren. Laut Gaia ist PDS 70 rund 370 Lichtjahre von uns entfernt.“ erklärt Keppler. PDS 70 b bestätigt zudem die Vorstellung, dass sich Gasplaneten wie Jupiter in größerer Entfernung von ihrem Zentralstern bilden sollten.

Um protoplanetare Scheiben sichtbar zu machen, wenden die Forscher raffinierte Beobachtungs- und Auswerteverfahren an. Auf normalen Aufnahmen überstrahlt der Stern alle Objekte in seinem direkten Umfeld. Mit dem SPHERE-Instrument kann das Licht, das uns direkt vom Stern erreicht, jedoch weitgehend eliminiert werden. Dafür nutzt die Kamera die Eigenschaft der Polarisation des Lichts. Linear polarisierte Lichtwellen schwingen nur in einer Ebene. Das Licht eines Sterns ist dagegen überwiegend unpolarisiert. Trifft es jedoch auf die Scheibe, wird das Licht bei der Streuung an den Staubteilchen linear polarisiert. Nutzt man nun einen entsprechenden Polarisationsfilter, der Lichtwellen in nur einer Schwingungsebene durchlässt, detektiert oder blockiert man je nach Ausrichtung das Licht, das von verschiedenen Bereichen der Scheibe kommt. Fotografen nutzen einen ähnlichen Effekt, wenn sie Reflexionen von einer glatten Oberfläche ausblenden wollen.

Vom Licht des Sterns erhält man dagegen unabhängig von der Filterkonfiguration immer ein Signal. Dieser Unterschied erlaubt es den Astronomen, das direkte Sternenlicht aus den Daten herauszurechnen. Unterstützt wird die Operation durch eine weitere Methode: die Astronomen decken den Stern mit einer Blende ab. Übrig bleibt ein Abbild der Scheibe.

„Nach zehn Jahren der Entwicklung neuer, leistungsstarker astronomischer Instrumente wie SPHERE zeigt uns diese Entdeckung, dass wir endlich in der Lage sind, Planeten direkt bei ihrer Entstehung zu finden und zu studieren. Ein lang gehegter Traum wird wahr“, schließt Prof. Thomas Henning, Direktor am MPIA, leitender Wissenschaftler der beiden Studien und der deutsche Co-I des SPHERE-Instruments.


Diese Newsmeldung wurde mit Material idw erstellt


Die News der letzten 14 Tage 1 Meldungen







warte

warte

warte

warte

warte

warte

warte

warte

warte

warte