Yang-Mills-Theorie

Yang-Mills-Theorie

Die Yang-Mills-Theorie (nach den Physikern Chen Ning Yang und Robert L. Mills) ist eine nicht-abelsche Eichtheorie, die zur Beschreibung der starken und der schwachen Wechselwirkung herangezogen wird. Sie wurde 1954 von Yang und Mills eingeführt[1] sowie unabhängig davon um die gleiche Zeit in der Dissertation von Ronald Shaw bei dem Physiker Abdus Salam.

Dieser Artikel beschreibt vorwiegend die mathematischen Aspekte des interdisziplinären Phänomens. Die physikalischen Aspekte werden vor allem bei einem der wichtigsten Beispiele für Yang-Mills-Theorien besprochen, der Quantenchromodynamik.

Die Theorie ist im Allgemeinen nichtabelsch, also nicht kommutativ. Sie enthält jedoch auch als Spezialfall die Quantenelektrodynamik als abelsche Eichtheorie.

Yang-Mills-Wirkung und Feldgleichungen

Die Yang-Mills-Theorie geht von der Yang-Mills-Wirkung $ \mathbf S_\mathrm{YM} $ für die Eichbosonen aus:

$ \mathbf S_\mathrm{YM} = \frac{1}{4g^2} \int \operatorname{Tr} \left( *F \wedge F \right) $
  • Die positive Größe $ g $ bedeutet in der Physik die Wechselwirkungskonstante.
  • Die Größe $ F $ heißt Yang-Mills-Feldstärke
  • $ *F $ ist die zu $ F $ duale Yang-Mills-Feldstärke. Der Dualitätsoperator * ist bezüglich der Indizes μ und ν (s. u.) mit der Signatur des Minkowski-Raums $ \mathbb M^4 $ zu bilden, z. B. mit (+−−−). Bezüglich der Indizes a muss man entsprechend der betrachteten Gruppe vorgehen. Analoges gilt auch für die Spur Tr (Abkürzung für engl. trace). Obere und untere Indizes sowie die Reihenfolge von Doppelindizes werden durch die *-Operation vertauscht. Das Yang-Mills-Funktional kann also auch in der expliziten Form geschrieben werden:
$ \mathbf S_\mathrm{YM} = \frac{1}{4g^2}\int \, \mathrm{d}^4 x \, F^{\nu\mu}_a \cdot F_{\mu\nu}^a $

Wendet man jetzt das Prinzip der kleinsten Wirkung auf die Eichbosonenfelder in $ \mathbf S_\mathrm{YM} $ an, so erhält man als zugehörige Euler-Lagrange-Gleichungen die Yang-Mills-Gleichungen:

$ \mathcal{D}F := \mathrm{d}F + g \, A \wedge F \equiv 0 $

wobei der Term $ \sim g $ die Yang-Mills-Ladungen enthält.

Hier wurde die mathematische Sprache der Differentialformen verwendet, die eine kompakte Notierung erlaubt. Ebenso ist dadurch die Wirkung in Formensprache nicht auf vier Dimensionen beschränkt und kann in dieser Darstellung z.B. für eine Yang-Mills-Theorie in einem $ d+1 $-dimensionalen Minkowskiraum mit Metriksignatur $ 1-d $ verwendet werden. Yang-Mills-Theorien in höheren Dimensionen und ihre supersymmetrischen Erweiterungen sind z.B. für AdS/CFT-Korrespondenz relevant.

Die Yang-Mills-Feldstärke ist durch die zweite Maurer-Cartan-Strukturgleichung definiert, die den differentialgeometrischen Zusammenhang $ A $ (genauer gesagt dessen lokale Darstellung) eines Hauptfaserbündels (in der Physik Eichpotential bzw. Eichbosonfeld genannt) mit seiner Krümmung $ F $ (in der Physik Feldstärke bzw. Feldstärketensor genannt) in Verbindung bringt:

$ F : = \mathrm{d}A +g A \wedge A $

Wie oben ist

  • $ A $ eine Lie-Algebra-wertige 1-Form über dem Hauptfaserbündel
  • $ F $ eine Lie-Algebra-wertige 2-Form über diesem Hauptfaserbündel
  • $ \mathrm{d}A $ die äußere Ableitung
  • $ A \wedge A $ das äußere Produkt von Differentialformen, das hier zwischen den $ A $ nicht verschwindet, da die Lie-Algebra-Komponenten von $ A $ im Allgemeinen nicht vertauschen.

Aus diesem Grunde ist die Feldform $ F $ auch nicht „geschlossen“ $ (\mathrm dF = 0), $ im Gegensatz zu abelschen Eichtheorien wie der Elektrodynamik.

In Komponentenschreibweise gilt wie in der Quantenchromodynamik:

$ F^a_{\mu \nu} = \partial_\mu A^a_{\nu} - \partial_\nu A^a_\mu + g f^a_{bc} A^b_\mu A^c_\nu $

und die Yang-Mills-Gleichungen werden in dieser Schreibweise (wenn man, wie üblich, auf der rechten Seite noch einen Quellenterm einfügt):

$ \partial^\mu F_{\mu\nu}^a + gf^{a}_{bc}A^{\mu b}F_{\mu\nu}^c\equiv J_\nu^a $

In der Physik betrachtet man meist eine kompakte, halbeinfache Lie-Gruppe $ G $, etwa $ SU(N) $ oder $ SO(N) $, deren hermitesche Generatoren folgende Kommutationsrelation erfüllen:

$ \left[ T_a, T_b \right] = i f_{ab}^c \, T_c $

Die $ f_{ab}^c $ heißen (reelle) Strukturkonstanten der Lie-Gruppe.

Ein beliebiges Element $ U $ von $ G $ wird durch folgende Gleichung dargestellt:

$ U = e^{i g \theta^a\, T_a} $

Dirac-Teilchen in der Yang-Mills-Theorie

Die Wellenfunktion (Dirac-Feld) $ \psi $ eines (mit Yang-Mills-Ladungen) geladenen Teilchens transformiert unter $ U \in G $ so:

$ \psi \to U \, \psi $ bzw.
$ \bar{\psi} \to \bar{\psi} \, U^\dagger $

Das gilt allerdings nur für Teilchen, die nach der fundamentalen Darstellung der Eichgruppe transformieren.

Die Lagrange-Funktion für das Dirac-Feld, aus der über die Euler-Lagrangegleichungen die Bewegungsgleichungen des dadurch beschriebenen geladenen Fermions folgen, sieht wie folgt aus:

$ \mathcal{L}(\psi, A) := \bar{\psi} \, \left[ \mathrm i \, \gamma^\mu \left( \partial_\mu - i g \, \hat A_\mu \right) + m \right] \psi + \dots \, $

Diese Lagrange-Funktion beschreibt die Kopplung des Yang-Mills-Feldes $ A $ („Eichfeld“) an die Materie- bzw. Dirac-Felder $ \psi $:

  • $ g $ ist die oben angegebene Kopplungskonstante,
  • $ \gamma $ eine Dirac-Matrix
  • Der Ausdruck $ \partial_\mu - i g \, \hat A_\mu =: \nabla_\mu $ wird kovariante Ableitung oder minimale Kopplung genannt.
  • Die Variablen $ \hat A_\mu $ bilden die Vierervektor-Komponenten der zusätzlich noch Lie-Algebra-wertigen 1-Form $ A $  (d. h., die Indizes a sind zur Vereinfachung weggelassen; meist lässt man auch das Symbol ^ weg, was hier der Deutlichkeit halber bei der kovarianten Ableitung nicht geschieht).
  • Bei Berücksichtigung von Dirac-Teilchen kommt in der Gesamtwirkung auch noch der oben erwähnte Feld-Anteil hinzu, der hier durch Punkte angedeutet ist und nicht explizit von $ \psi $ abhängt.

Wenn die Yang-Mills-Theorie zur Beschreibung der starken Wechselwirkung eingesetzt wird (und zwar in Form einer $ SU(3) $-Eichtheorie, der schon erwähnten Quantenchromodynamik), dann beschreibt $ A $ das Gluonfeld. Die o.g. $ T_a $ stellen die acht Gluonenarten dar (die $ SU(3) $ hat 8 Generatoren, üblicherweise verwendet man zu ihrer Darstellung die Gell-Mann-Matrizen).

Einige wichtige Yang-Mills Theorien mit geladenen Fermionen-Materiefeldern besitzen die Eigenschaft der asymptotischen Freiheit bei hohen Energien bzw. kurzen Abständen, was von der Eichgruppe und der Anzahl der Fermionentypen abhängt.

Offene Probleme

Ein großer Fortschritt in der Durchsetzung der Yang-Mills-Theorien in der Physik war der Nachweis ihrer Renormierbarkeit durch Gerardus ’t Hooft Anfang der 1970er Jahre. Die Renormierbarkeit gilt auch, wenn die Eichbosonen massiv sind wie in der elektroschwachen Wechselwirkung. Die Massen werden nach dem Standardmodell durch den Higgs-Mechanismus erworben.

In der Mathematik ist die Yang-Mills-Theorie aktuelles Forschungsgebiet und diente z. B. Simon Donaldson zur Klassifikation differenzierbarer Strukturen auf 4-Mannigfaltigkeiten. Die Yang-Mills-Theorie wurde vom Clay Mathematics Institute in die Liste der Millennium-Probleme aufgenommen. Insbesondere geht es bei diesem Preis-Problem darum nachzuweisen, dass die niedrigsten Anregungen einer reinen Yang-Mills-Theorie (d. h. ohne Materiefelder) eine endliche (d.h. hier, nicht-verschwindende) Masse bzw. Anregungsenergie haben müssen (d. h., es besteht ein Mass-Gap – in der Festkörperphysik würde man sagen: eine Energielücke – zum Vakuumzustand). Ein damit zusammenhängendes weiteres offenes Problem ist der Nachweis der vermuteten Confinement-Eigenschaft von Yang-Mills-Feldern in Wechselwirkung mit Fermionenfeldern.

In der Physik erfolgen die Untersuchung von Yang-Mills-Theorien inzwischen nicht mehr über störungstheoretische analytische Methoden, sondern über Gitterrechnungen (Gittereichtheorien) oder funktionale Methoden wie z. B. Dyson-Schwinger-Gleichungen.

Terminologie-Gegenüberstellung

In der Mathematik bzw. der Physik bestehen ganz unterschiedliche Terminologien, die hier systematisch gegenübergestellt werden: So erzeugt man in der Mathematik aus $ A $ den differentialgeometrischen Zusammenhang, während man in der Physik vom Vektorpotential des Feldes redet, welches unter anderem dessen Teilchen erzeugt (z. B. die Eichteilchen der Elementarteilchenphysik). Mit $ \Omega $ bzw. $ F $ bezeichnet man in der Mathematik die Krümmung, in der Physik dagegen den Feldtensor. Der Ausdruck $ \, A \wedge A $ bezeichnet in beiden Terminologien einen antisymmetrischen Anteil (Lie-Kommutator) der Krümmungsform bzw. des Feldstärketensors. Die Physiker sprechen in diesem Zusammenhang von Strukturkonstanten des Tensors.

Literatur

  • Gerardus 't Hooft (Herausgeber, Physiker): 50 years of Yang-Mills theory. World Scientific, Singapore 2005, ISBN 981-256-007-6
  • Keith J. Devlin (Mathematiker): The Millennium problems – the seven greatest unsolved mathematical puzzles of our time. Granta Books, London 2005, S. 63–97, ISBN 1-86207-735-5
  • Michael F. Atiyah (Mathematiker): Geometry of Yang-Mills fields. Scuola Normale Superiore, 1979
  • Mikio Nakahara (Physiker): Geometry, Topology and Physics. Second Edition. Graduate Student Series in Physics. Institute of Physics Publishing, Bristol and Philadelphia, 2003, S. 374–418, ISBN 0 7503 0606 8

Einzelnachweise

  1. Yang, Mills Conservation of isotopic spin and isotopic gauge invariance, Physical Review, Band 96, 1954, S.191–195, Abstract

Diese Artikel könnten dir auch gefallen



Die letzten News


28.06.2021
Quantensimulation: Messung von Verschränkung vereinfacht
Forscher haben ein Verfahren entwickelt, mit dem bisher kaum zugängliche Größen in Quantensystemen messbar gemacht werden können.
28.06.2021
Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik? Ein Forschungsteam analysierte wichtige Messungen neu. Sie fanden heraus: Ein angeblich sensationeller Effekt existiert gar nicht.
28.06.2021
Paradoxe Wellen: Gefangene Lichtteilchen auf dem Sprung
Physikern ist es gelungen, ein neuartiges Verhalten von Lichtwellen zu beobachten, bei welchem Licht durch eine neue Art von Unordnung auf kleinste Raumbereiche begrenzt wird.
28.06.2021
Isolatoren bringen Quantenbits zum Schwitzen
Schwachleitende oder nichtleitende Materialien haben Innsbrucker Physiker als wichtige Quelle für Störungen in Ionenfallen-Quantencomputern identifiziert.
23.06.2021
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
17.06.2021
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
17.06.2021
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
17.06.2021
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
17.06.2021
Entdeckung der größten Rotationsbewegung im Universum
D
13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.
13.06.2021
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
13.06.2021
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.