Wow!-Signal

Wow!-Signal

Bild 1: Scan des namensgebenden Dokuments von Jerry R. Ehman

Das Wow!-Signal war ein Schmalband-Radiosignal, das der Astrophysiker Jerry R. Ehman im Rahmen eines SETI-Projekts am „Big Ear“-Radioteleskop der Ohio State University am 15. August 1977 aus Richtung des Sternbildes Schütze aufzeichnete. Die Herkunft des Signals ist bis heute nicht sicher geklärt.

Das Signal

Frequenz und Stärke

Das Signal war mit dem 30-fachen der Standardabweichung signifikant stärker als das Hintergrundrauschen. Die Bandbreite betrug weniger als 10 kHz.[1] Zwei verschiedene Werte seiner Frequenz wurden angegeben, 1420,356 MHz (J. D. Kraus, alter Wert) und 1420,456 MHz (J. R. Ehman, revidierter Wert), jedoch beide sehr nahe der Frequenz von 1420,405 MHz, die vom Hyperfeinstruktur-Übergang des neutralen Wasserstoffs (Wasserstofflinie) im Universum erzeugt wird. Der Unterschied dieser beiden Werte erklärt sich durch einen Fehler im System, der erst nach dem Signal entdeckt und berichtigt wurde. Auch wurden zwei mögliche Äquatorialkoordinaten angegeben: R.A. = 19h22m22s ± 5s oder 19h25m12s ± 5s, sowie beide Dek. = −27°03′ ± 20′ (in der Epoche B1950.0). Diese Region liegt im Sternbild Schütze, etwa 2,5 Grad Süd der Gruppe Chi Sagittarii. Tau Sagittarii ist der nächste sichtbare Stern.

Verblüfft, wie schmalbandig das Signal war, und wie sehr das Intensitäts-Profil dem glich, das ein lokalisiertes Signal in der verwendeten Antenne erzeugen würde, umrandete J. R. Ehman auf dem Computer-Ausdruck den Zeichencode „6EQUJ5“ (die empfangenen Intensitäten wurden aufsteigend codiert mit den Zahlen 1 bis 9, über 9 hinaus mit den Buchstaben A bis Z, „Z“ → höchste Intensität) der Intensitätsvariation mit dem Stift und schrieb den Kommentar „Wow!“ an den Seitenrand. Dieser Kommentar wurde zum Namen des Signals. [2]

Da das „Big Ear“-Radioteleskop auf den Himmel fixiert war und sich daher mit der Erdrotation mitbewegte, kann man davon ausgehen, dass ein interstellares Signal im Gegensatz zu einem erdgebundenen oder sonnensystemgebundenen Signal dabei zuerst in seiner Intensität angestiegen wäre, nach 36 Sekunden seinen Höhepunkt erreicht und sich danach wieder abgeschwächt hätte. Da das Signal exakt dieser Schablone entsprach, ist die Wahrscheinlichkeit, dass es sich tatsächlich um ein interstellares Signal handelt, extrem hoch. Allerdings wurde damals ein weiteres Empfangsfenster exakt drei Minuten nach jenem ersten Fenster nachgeführt und hätte das Signal entsprechend drei Minuten nachher ebenfalls empfangen müssen; dies war jedoch nicht der Fall.

Es wurde spekuliert, ob interstellare Oszillation eines schwächeren, kontinuierlichen Signals (ein Effekt ähnlich dem atmosphärischen Funkeln der Sterne) eine mögliche Erklärung ist (obwohl diese einen künstlichen Ursprung des Signals nicht widerlegen würde). Jedoch konnte das Signal mit dem wesentlich empfindlicheren Very Large Array ebenfalls nicht festgestellt werden. Die Wahrscheinlichkeit, dass ein Signal unterhalb der Empfindlichkeit des Very Large Array vom „Big Ear“-Radioteleskop wegen interstellarer Szintillation empfangen wird, ist mit weniger als 10−40 extrem gering.

Es ist unwahrscheinlich, jedoch möglich, dass das Signal terrestrischen Ursprungs ist oder von einem Objekt innerhalb des Sonnensystems stammt. Das Signal wurde 72 Sekunden lang gemessen und wiederholte sich offenbar nicht; alle späteren Nachforschungen – durch Ehman selbst und durch andere – konnten es nicht mehr ausfindig machen. Die Natur des Signals bleibt deshalb ungeklärt, und bislang können lediglich einige Möglichkeiten ausgeschlossen werden.

Interpretation des Papier-Ausdrucks

Die horizontalen Zeilen in Bild 1 stellen die Empfangsfeldstärken in Intervallen von 12 Sekunden dar. Hierbei wurde etwa 10 Sekunden lang empfangen, der Computer benötigte etwa 2 Sekunden für die Verarbeitung. Die vertikalen Spalten stellen die Empfangsfeldstärken in den einzelnen Empfangskanälen dar. Es gab 50 Kanäle von je 10 kHz Bandbreite. Jedes Zeichen auf dem Ausdruck repräsentiert die Empfangsfeldstärke in einem bestimmten 10-kHz-Kanal und einem bestimmten 12-Sekunden-Intervall. Zur Codierung wurde die geglättete Feldstärke relativ zum Rauschen in Einheiten der Standardabweichung herangezogen. Dieser Wert wurde durch ein alphanumerisches Zeichen dargestellt. Ein Leerzeichen bedeutete, dass das derzeitige Signal weniger als 1 Standardabweichung über dem Rauschen lag. Werte von 1 bis 9 gaben an, dass das Signal über 1 bis 9 Standardabweichungen über den Rauschen lagen. Noch stärkere Signale (Faktor 10 bis 35 über dem Rauschen) wurden durch die Buchstaben A bis Z dargestellt. Der Buchstabe U entspricht dem Intervall 30–31.[3] Üblicherweise sollte der Ausdruck viele Leerstellen aufweisen, mit gelegentlichen niedrigen Zahlen.

Das Muster "6EQUJ5" in einer vertikalen Spalte zeigt einen starken, schmalbandigen Anstieg der Empfangsfeldstärke. Die maximale Feldstärke lag dabei 30 Standardabweichungen über dem Rauschen.

Veränderung über die Zeit

Bild 2: Verlauf der Empfangsstärke über die Zeit

Bild 2 zeigt die Zeichen als Kurve, also den Verlauf der Empfangsstärke über der Zeit. Die eigentliche Stärke des Signals könnte konstant gewesen sein, durch die feste Montage der Antenne und durch die Drehung der Erde wurde die Empfangskeule am Signal vorbeigedreht. So musste sich eine Veränderung von sehr schwach über stark zu sehr schwach ergeben, ähnlich einer Glockenkurve.[4]

„Horizontale“ Information

Die nachfolgende Erklärung befasst sich mit den vertikalen Spalten in Bild 1, speziell mit der Spalte mit der kodierten Folge der Signalstärken.

Horizontal, von links nach rechts, sind in Bild 1 nebeneinander 20 Spalten. Diese repräsentieren 20 Kanäle, in denen gleichzeitig Signale eingingen.

Die Bandbreite jedes Kanals war 10 kHz. In Bild 1 finden sich im Rest der Kanäle keine starken Signale, nur das allgemeine schwache Rauschen.

Modulation, Inhalt möglich?

Jerry Ehman diskutiert in seinem Aufsatz The Big Ear Wow! Signal ausführlich Details.[5] In einem Kapitel des Dokuments diskutiert er die Frage, ob es möglich ist, dass das Signal Modulation, also Inhalt, enthielt.[6]

Die Antwort von Dr. Ehman war: 'Ja, das ist möglich.' Aber damals war der Empfänger nicht genügend leistungsfähig. Auch der damalige Computer war es nicht. Beim damaligen Stand der Technik hätte man bereits einen wesentlich schmalbandigeren Empfänger einsetzen können, nämlich mit einer Bandbreite von höchstens 0,5 kHz, und einen zweiten Computer für die Analyse. Falls das Signal eine Modulation enthielt, etwa eine ähnliche, wie wir sie in unserer Arecibo-Botschaft verwendeten, konnten wir den Inhalt wegen unseres zu einfachen, breitbandigen Empfängers nicht feststellen.

Mögliche Erklärungen

Im Rahmen der Fernsehdokumentation Die Aliens – Mythos und Wahrheit (ZDF, 2010) erklärte Harald Lesch, dass das Wow!-Signal alle Kennzeichen eines interstellaren Kommunikationsversuchs zeigte, es aber auch ein gigantischer Ausbruch eines Pulsars gewesen sein könnte.[7]

Antonio Paris, Astronomieprofessor am St. Petersburg College in Florida und leitender Wissenschaftler am Center for Planetary Science, vermutet dagegen, dass das Signal natürlichen Ursprungs war und von einem vorüberziehenden Kometen innerhalb des Sonnensystems gestammt haben könnte. Laut Paris könnte das Teleskop seinerzeit die Spur einer Wasserstoffwolke eines solchen Kometen registriert haben. Diese Wasserstoffwolken entstehen, wenn sich ein Komet der Sonne nähert. Mögliche Kandidaten für dieses Ereignis seien die erst 2006 entdeckten Kometen 266P/Christensen und P/2008 Y2 (Gibbs).[8][9][10] Am 25. Januar 2017 bot sich mit der erneuten Passage von „266P/Christensen“ eine Überprüfung seiner Theorie an. Die Ergebnisse dieser Beobachtungen hat Antonio Paris im April 2017 in einem Aufsatz veröffentlicht.[11]

Big-Ear-Radioteleskop

Das Ohio State University Radio Observatorium, kurz auch nur The Big Ear (deutsch: Das große Ohr) genannt, war ein Radioteleskop auf dem Gelände der Ohio Wesleyan University und war bis 1995 Teil eines SETI-Suchprogramms der Ohio State University.[12] Am Big Ear wurde von 1973 bis 1995 das bisher längste SETI-Suchprogramm durchgeführt. Nach fast 40 Betriebsjahren wurde das Teleskop 1998 demontiert, das Gelände verkauft und danach als Golfplatz genutzt.[13]

Literatur

  • Robert H. Gray: The Elusive Wow: Searching for Extraterrestrial Intelligence. Palmer Square Press, Chikago 2012, ISBN 0983958440
  • Jerry R. Ehmann: "Wow!" – A Tantalizing Candidate. in: H. Paul Shuch: Searching for extraterrestrial intelligence – SETI past, present, and future. Springer, Berlin 2011, ISBN 978-3-642-13195-0, S. 47–63.

Weblinks

 <Lang> Commons: Wow!-Signal – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. "The signal was very strong (30 sigmas or thirty times the background), and it was narrowbanded (width of 10 kilohertz or less) because it appeared in only one channel." in: David W. Swift: SETI pioneers – scientists talk about their search for extraterrestrial intelligence. University of Arizona Press, Tucson 1990, ISBN 0-8165-1119-5, S. 13–15, 244
  2. [1] Telepolis Heise-Verlag. Abgerufen am 15. August 2017.
  3. Jerry R. Ehman: The Computer Printout. In: The Big Ear Wow! Signal. What We Know and Don't Know About It After 20 Years. 3. Februar 1998, abgerufen am 16. August 2017 (english).
  4. Jerry Ehman: Explanation of the Code "6EQUJ5" On the Wow! Computer Printout. Abgerufen am 1. Januar 2010 (english).
  5. Jerry R. Ehman: The Big Ear Wow! Signal. What We Know and Don't Know About It After 20 Years. Big Ear Radio Observatory, , abgerufen am 6. Juni 2011 (english).
  6. Jerry R. Ehman: The Big Ear Wow! Signal. What We Know and Don't Know About It After 20 Years. Big Ear Radio Observatory, , S. 21–23, abgerufen am 6. Juni 2011 (english).
  7. Video Die Aliens – Mythos und Wahrheit in der ZDFmediathek, abgerufen am 11. Februar 2014 (offline)
  8. Antonio Paris; Evan Davies: Hydrogen Clouds from Comets 266/P Christensen and P/2008 Y2 (Gibbs) are Candidates for the Source of the 1977 “WOW” Signal. In: Journal of the Washington Academy of Sciences 100 (2015).
  9. Jesse Emspak: Famous Wow! signal might have been from comets, not aliens. newscientist.com, 11. Januar 2016, abgerufen am 13. Januar 2016 (english).
  10. Thomas Trösch: Weltall: Woher stammt das Wow-Signal? golem.de, 12. Januar 2016, abgerufen am 13. Januar 2016.
  11. Antonio Paris: Hydrogen line observations of cometary spectra at 1420 MHz. In: Journal of the Washington Academy of Sciences 102 (2017), Nr. 2. http://planetary-science.org, 1. April 2017, abgerufen am 6. Juni 2017.
  12. About the Big Ear Radio Telescope bigear.org, abgerufen am 20. November 2010
  13. Fernando J. Ballesteros: E. T. talk : how will we communicate with intelligent life on other worlds? Springer, New York 2010, ISBN 978-1-441-96088-7, S. 78

Diese Artikel könnten dir auch gefallen



Die letzten News


13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.
13.06.2021
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
13.06.2021
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.