Wirbel (Strömungslehre)

Wirbel (Strömungslehre)

Abb. 1: Luftwirbel: Wirbelschleppe (eingefärbt)
Abb. 2: Ein Strudel ist ein Sonderfall eines Wirbels

Als Wirbel oder Vortex bezeichnet man in der Strömungslehre eine drehende Bewegung von Fluidelementen um eine gerade oder geschwungene Drehachse. Der Begriff des Wirbels ist eher intuitiv – siehe Bilder – und mathematisch nicht präzise formulierbar.

In Fluiden mit niedriger Viskosität (Luft und Wasser) ist die Fließgeschwindigkeit in größeren Wirbeln im Zentrum am größten und nimmt umgekehrt proportional zum Abstand vom Zentrum ab. Die Wirbelstärke ist im Zentrum groß und fast null im äußeren Bereich des Wirbels, weshalb sich Fluidelemente dort kaum um sich selbst drehen. Umgekehrt verhält es sich mit dem Druck, der im Zentrum am niedrigsten ist. Wirbel neigen dazu ausgedehnte Wirbelröhren auszubilden, die sich mit der Strömung mitbewegen, sich winden, biegen und strecken können.

In der Meteorologie und in der Aerodynamik spielen Wirbel eine wichtige Rolle.

Phänomenologie

Dieser Abschnitt ist der Phänomenologie, d. h. den physikalisch gegebenen Wirbelerscheinungen gewidmet.

Entstehung

Abb. 3: hydrodynamische Simulation einer Rayleigh-Taylor-Instabilität
Abb. 4: Rayleigh-Bénard Konvektionszellen

Wirbel werden durch (gekrümmte) Wände eingeleitet, durch äußere Kräfte angefacht, durch die Drehimpulserhaltung erzwungen oder sind eine Konsequenz des Ausgleichsbestrebens sich selbst überlassener Fluide (Zweiter Hauptsatz der Thermodynamik).

Runde Einfassungen wie das Glas in Abb. 2 oder der Stufensprung bei einer Wasserwalze leiten Strömungen im Kreis. In der Aero- und Hydrodynamik wichtige Wirbel entstehen, wenn sich ein Fahrzeug durch ein Fluid bewegt, speziell wenn sich Flugzeuge oder Autos durch Luft oder Schiffe durch das Wasser bewegen. In Folge von Strömungsabrissen an der A-Säule von Autos oder an einem Zylinder (siehe Animation in Abb. 7) entstehen dauerhafte Wirbelströmungen. Nicht nur bei Orgelpfeifen[1] sind Luftwirbel an der Erzeugung hörbaren Schalls beteiligt.

Eine Kraftwirkung, die Wirbel entstehen lässt, sind Trägheitskräfte in Fluiden, die als Ganzes rotieren, wie zum Beispiel die Erdatmosphäre. Der Corioliseffekt lenkt dabei Strömungen innerhalb des Luftkörpers in eine Kreisbewegung um. Dies ist die Ursache dafür, dass Hoch- und Tiefdruckgebiete in der Atmosphäre Wirbel bilden. Der polare Vortex und der Jetstream sind ebenfalls Wirbel, die durch Trägheitskräfte entstehen.

Wenn Fluide auf ein Zentrum zustreben, dann können Fluidelemente, die Drehimpuls besitzen, nicht einfach geradewegs hinein stürzen: Die Erhaltung des Drehimpulses zwingt sie erst auf eine Kreisbahn um das Zentrum, wodurch im interstellaren Raum protoplanetare Scheiben, das sind Wirbel aus Staub und Gas, um junge Sterne im Zentrum entstehen.

Nur indirekt von äußeren Einflüssen geleitet entstehen Wirbel, wenn Fluidmassen mit unterschiedlichen Eigenschaften aufeinander treffen. Die Fluidmassen können sich unter anderem in ihrer Temperatur, ihrer Geschwindigkeit oder ihrer Dichte unterscheiden. An den Grenzflächen zwischen den Fluidmassen kommt es bei hinreichender Differenz in den Eigenschaften (am Kipp-Punkt) zu Instabilitäten, die zu Wirbeln und im weiteren Verlauf zu turbulenter Strömung führen, in der unterschiedlich große Wirbel die Massen intensiv durchmischen. Ein solches Phänomen ist die Kelvin-Helmholtz-Instabilität zwischen zwei unterschiedlich schnellen Strömungen oder die Rayleigh-Taylor-Instabilität zwischen zwei unterschiedlich schweren Flüssigkeiten (Abb. 3). Die Durchmischung führt zu einem Ausgleich des Gefälles, es sei denn, äußere Einflüsse halten das Gefälle aufrecht. Dann können andauernde, kreisende Konvektionszellen entstehen (Passatwind, Walker-Zirkulation, Konvektionszone der Sonne, Abb. 4).

Eigenschaften der Drehbewegung

Abb. 5: Ein durch eine theoretische, konstante Auftriebskraft am Tragflügel erzeugter Hufeisenwirbel hinter einem Segelflugzeug

Wirbel bilden oftmals keine stationäre Strömung, können also ihre Form ändern und sich als ganzes fortbewegen. In diesem Fall sind die Wege der Fluidelemente keine geschlossenen Kurven, sondern eher Schraubenlinien oder Zykloide. Die Drehachse der Wirbel, die analog zur Stromlinie definierte Wirbellinie, kann eine gebogene, sich windende und als ganzes bewegende Linie sein (Tornado). Die drehende Bewegung kann mit radialen, zum Zentrum hin oder weg gerichtetem Fluss kombiniert sein, was zu Strudeln und Spiralen wie bei Abflüssen führt. Ein rein kreisender Wirbel ohne radiale Geschwindigkeitskomponente wird quellenfrei genannt.

Wegen der Drehimpulserhaltung können Wirbel nicht ohne weiteres aufhören oder beginnen zu drehen. Einmal aufgelöste Wirbel bleiben verschwunden, was die Aussage des ersten Helmholtz’schen Wirbelsatzes ist. Die Kreisbewegung (Zirkulation) eines Rings aus Fluidelementen ist eine Erhaltungsgröße (Kelvinscher Wirbelsatz), die über die Länge einer Wirbelröhre konstant ist (dritter Helmholtz’scher Wirbelsatz). Daher neigen Wirbel dazu ausgedehnte Wirbelröhren im Fluid auszubilden, was beispielsweise am Hufeisenwirbel deutlich wird, siehe Abb. 5. Durch Reibeffekte und Dissipation lösen sich jedoch reale Wirbel mit der Zeit auf und nimmt die Zirkulation in Wirbeln ab.

Die Fluidelemente werden vom Wirbel mitgeführt, was eine Konsequenz des zweiten Helmholtz’schen Wirbelsatzes ist. So können Wirbel Masse, Drehimpuls und Energie über beachtliche Entfernungen, die das mehrfache ihrer Größe betragen können, mit nur geringen Verlusten transportieren (Rauchringe).

In größeren Wirbeln drehen sich die Fluidelemente nicht um sich selbst, sondern werden im Kreis parallel verschoben. Diese Tatsache führt zwischen den Fluidelementen zu Scherungen, die zum Zentrum des Wirbels hin zunehmen. Viskosität verringert diese Scherung im Zentrum des Wirbels oder in kleinen Wirbeln, so dass es dort zu einer quasi-starren Rotation kommt. Diese Reibeffekte dissipieren die Rotationsenergie und führen letztendlich zur Auflösung der Wirbel (siehe Energiekaskade turbulenter Strömungen und #Rankine-Wirbel unten).

Druck- und Temperaturverteilung in Wirbeln

Abb. 6: Kondensation von Wasserdampf im Zentrum von Wirbeln hinter einer Boeing B-747.

In einem Fluid mit niedriger Viskosität ist in einer stationären Strömung bei Vernachlässigung äußerer Kräfte die Summe aus kinetischer Energie und dem statischen Druck, der Totaldruck, entlang einer Stromlinie konstant. Der statische Druck, ist der Druck, den ein mit der Strömung mitbewegtes Fluidelement verspürt. In größeren Wirbeln nimmt die Strömungsgeschwindigkeit zum Zentrum hin zu, weswegen der statische Druck dort abnimmt. In einem realen Gas geht in einem konstanten Volumen abnehmender Druck mit abnehmender Temperatur einher, weshalb im Zentrum der Wirbel die Temperatur am niedrigsten ist. Daher ist das Zentrum solcher Wirbel auf Grund von Kondensstreifen manchmal sichtbar, siehe Abb 6. Die Wirbelstärke ist in den Randwirbeln an den Flügelspitzen am größten und dort bilden sich klar umrissene Wirbelröhren. Die Intensität der Wirbelröhren nimmt zum Rumpf hin ab und die Wirbelröhren sind weniger klar definiert.

Wirbel und Turbulenz

Wirbel sind der Hauptbestandteil turbulenter Strömungen aber nicht jeder Wirbel gehört zu einer turbulenten Strömung. Turbulente Strömungen beinhalten auf allen Größenskalen Wirbel, die sich scheinbar ungeordnet bewegen. Eine in der Praxis bewährte Unterscheidung wird bei den Reynolds-Gleichungen getroffen: Die physikalischen Größen – hier interessiert vor allem die Geschwindigkeit – werden in einen Mittelwert und einen statistischen Schwankungswert aufgeteilt. Der Schwankungswert behandelt die zufälligen, fluktuierenden Wirbel während der zeitunabhängige Mittelwert die stationären Wirbel beinhaltet.

Abb. 7: Animation zur Ausbildung einer Wirbelstraße

Ein Grenzfall sind periodische Ablösungen von Wirbeln wie in der Kármán’schen Wirbelstraße, die hinter einem umströmten Zylinder bei nicht zu großer Reynoldszahl entsteht, siehe Animation in Abb. 7. Beim zunächst laminar, wirbelfrei umströmten Zylinder bilden sich bei zunehmender Strömungsgeschwindigkeit periodische Ablösungen: Es lösen sich in einem charakteristischen Muster abwechselnd links- und rechts-drehende Wirbel ab. Diese Wirbel sind weder stationär noch chaotisch. Mit steigender Anströmungsgeschwindigkeit geht die Wirbelstraße in turbulente Strömung über: Es treten mehr Wirbel auf, so dass der Strömungswiderstand ansteigt. Beim Übergang zur Turbulenz variieren die Größe der Wirbel und die Zeitpunkte ihrer Ablösung immer mehr. Bei voll ausgebildeter Turbulenz sind Wirbel auf allen Größenskalen vorhanden. Dieser Übergang von laminarer, wirbelfreier Strömung in turbulente Strömung mit einem Übergangsbereich, der deutliche Strukturen aufweist, ist ein weit verbreitetes Phänomen.

Wirbeltypen

Potentialwirbel

Abb. 8: Potentialwirbel mit Stromlinien (blau) und Fluidelementen (Türkis)

Der Potentialwirbel oder freie Wirbel ist ein klassisches Beispiel einer rotationsfreien Potentialströmung, siehe Abb. 8. Große Wirbel in Fluiden mit niedriger Viskosität werden mit diesem Modell gut beschrieben. Beispiele für einen Potentialwirbel sind der Badewannenablauf fern des Ausflusses, aber auch in guter Näherung ein Tornado. Die Winkelgeschwindigkeit in diesen Wirbeln ist in ihrem Zentrum am größten wo andererseits der Druck im Minimum ist. Wegen dieser, von einer Starrkörperbewegung abweichenden Geschwindigkeitsverteilung werden die Fluidelemente verformt.

Weil die Rotation „rot“ des Geschwindigkeitsfeldes $ \vec{v} $ gemäß

$ |\operatorname{rot}\, \vec{v}|=0 $

verschwindet, zeigen die Fluidelemente trotz ihrer kreisenden Bewegung im Wirbel immer in dieselbe Richtung. Wenn man mathematisch genau ist, gilt die obige Gleichung allerdings nur außerhalb des Zentrums, also für $ (x,y)\ne \operatorname 0, $ während bei Mitnahme des Zentrums $ \operatorname{rot}\, \vec{v}=\vec\Phi_0\cdot \delta ( x,y) $ gilt, mit der zweidimensionalen Diracschen Deltafunktion und der Wirbelstärke $ \vec\phi_0. $

Wegen dieser totalen Rotationsfreiheit für alle Punkte außerhalb des Zentrums kann lokal nicht auf eine Wirbelbewegung geschlossen werden. Erst die Beobachtung eines größeren Gebietes oder über längere Zeiträume gestattet es, diese Wirbel zu erkennen. In der numerischen Strömungsmechanik ist das kleinste betrachtete Volumen das finite Volumen für das sogenannte Wirbelkriterien formuliert wurden, um Wirbel von Scherschichten zu unterscheiden.

Festkörperwirbel

Abb. 9: Festkörperwirbel mit Stromlinien (blau) und Fluidelementen (Türkis)

Ein Festkörperwirbel bildet sich z. B. wenn sich nach entsprechend langer Anlaufzeit eine Flüssigkeit in einem Gefäß auf einem Drehteller mit konstanter Winkelgeschwindigkeit $ \omega $ als starrer Körper dreht, siehe Abb. 9. Mitbewegte Fluidteilchen drehen sich um ihre eigene Achse, ohne verformt zu werden. In einem Festkörperwirbel ist

$ |\operatorname{rot}\, \vec{v}|= 2\omega\neq 0\,. $

Alle Fluidpartikel bewegen sich wie beim Potentialwirbel auf konzentrischen Kreisbahnen, aber die Geschwindigkeits- und Druckverteilung ist eine völlig andere: Die Geschwindigkeit ist außen am größten und innen am langsamsten, so dass der Druck außen am niedrigsten und innen am höchsten ist.

Rankine-Wirbel

Abb. 10: Skizze eines Rankine-Wirbels

Der Rankine-Wirbel[2] nach William John Macquorn Rankine ist ein Wirbelmodell, das den Potentialwirbel im Außenbereich mit dem Festkörperwirbel im Zentrum verbindet, siehe Abb. 10. Der Potentialwirbel beschreibt eine Ausflussströmung im Außenbereich gut, wo die Umfangsgeschwindigkeit $ v_\varphi $ mit dem Radius abnimmt (blaue Kurve) und keine Rotation vorliegt ($ \omega=|\operatorname{rot}\vec{v}|\,, $ rote Kurve). Mit Annäherung der Fluidelemente an das Zentrum entwickeln sich im Potentialwirbel unrealistisch hohe Schergeschwindigkeiten im Fluid. Im Rankine-Wirbel verhindern Zähigkeitskräfte unterhalb eines gewissen Kernradius r0 die Scherungen und es kommt zu einer quasi-starren Drehung. Innerhalb des Kernradius ist die Umfangsgeschwindigkeit daher proportional zum Radius und die Rotation ω ist konstant ungleich null. In realen Fluiden wird der Übergang von der Außen- in die Kernströmung nicht abrupt, sondern glatt verlaufen (gestrichelte rote und blaue Kurven). Der Effekt der außen fehlenden und innen vorhandenen Rotation der Teilchen ist durch mitschwimmende Streichhölzer angedeutet.

Hamel-Oseen’scher-Wirbel

Hauptartikel: Hamel-Oseenscher-Wirbel
Abb. 11: Umfangsgeschwindigkeit beim Hamel-Oseen’schen-Wirbel im Vergleich mit der starren Rotation und dem Potentialwirbel

Der Hamel-Oseen’sche-Wirbel (von Carl Wilhelm Oseen, Georg Hamel) ist ein Wirbelmodell, das die Navier-Stokes-Gleichungen exakt erfüllt, die die Strömung realer Fluide gut beschreibt. Das Fluid strömt rein kreisförmig jedoch zeitabhängig, instationär um das Wirbelzentrum. Die Viskosität zehrt die kinetische Energie des Wirbels mit der Zeit auf und die Strömungsgeschwindigkeit nimmt monoton mit der Zeit ab. Zu Beginn der Bewegung oder im Grenzfall verschwindender Viskosität ist der Wirbel ein Potentialwirbel. Ansonsten ist das Geschwindigkeitsprofil des Hamel-Oseen’schen-Wirbels beschränkt und entspricht im Wirbelkern, sowie im Außenbereich einem Rankine-Wirbel, siehe Abb. 11.

Siehe auch

  • Wirbelfrei
  • Wirbelfeld
  • Meeresströmung
  • Das Beispiel im Artikel zur Stromfunktion beschreibt eine analytische Lösung für eine stationäre Wirbelstraße.

Einzelnachweise

  1. Luftblattvisualisierung an einer offenen Pfeife, aufgerufen am 27. August 2015.
  2. H. E. Siekmann, P. U. Thamsen: Strömungslehre. Springer, 2007, ISBN 978-3-540-73726-1, S. 177 f.

Literatur

Weblinks


Diese Artikel könnten dir auch gefallen



Die letzten News


31.07.2021
Wasserdampf-Atmosphäre auf dem Jupitermond Ganymed
Internationales Team entdeckt eine Wasserdampfatmosphäre auf der sonnenzugewandten Seite des Mondes Jupiter-Mondes Ganymed. Die Beobachtungen wurden mit Hubble-Teleskop gemacht.
31.07.2021
Der Quantenkühlschrank
An der TU Wien wurde ein völlig neues Kühlkonzept erfunden. Computersimulationen zeigen, wie man Quantenfelder verwenden könnte, um Tieftemperatur-Rekorde zu brechen.
31.07.2021
Warum Bierdeckel nicht geradeaus fliegen
Wer schon einmal daran gescheitert ist, einen Bierdeckel in einen Hut zu werfen, sollte nun aufhorchen: Physiker der Universität Bonn haben herausgefunden, warum diese Aufgabe so schwierig ist.
27.07.2021
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
26.07.2021
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
26.07.2021
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
26.07.2021
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
26.07.2021
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
26.07.2021
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
26.07.2021
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
26.07.2021
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
26.07.2021
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht. Solche Wigner-​Kristalle wurden bereits vor fast neunzig Jahren vorhergesagt, konnten aber erst jetzt direkt in einem Halbleitermaterial beobachtet werden.
26.07.2021
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.
26.07.2021
Synthese unter Laserlicht
Eine Forschungsgruppe hat neue Methode zur Bildung von protoniertem Wasserstoff entdeckt. Mit starken Laserpulsen erzeugen Physiker des attoworld-Teams am Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München erstmals protonierten Wasserstoff an Nanooberflächen.
26.07.2021
Materiestraße im All lässt Galaxienhaufen wachsen
Vor einem halben Jahr meldeten Astronomen der Universität Bonn die Entdeckung eines extrem langen intergalaktischen Gasfadens mit dem Röntgenteleskop eROSITA.
26.07.2021
Kosmischer Treffpunkt für Galaxienhaufen
Was treibt Galaxien an, oder führt zu ganzen Ansammlungen von Galaxien – sogenannte Galaxienhaufen? Obwohl kosmologische Modelle und Simulationen diese Strukturen und die Rolle, die sie spielen könnten, vorausgesagt haben, ist die Bestätigung ihrer Existenz durch die Beobachtung mit dem Röntgen-Weltraumteleskop eROSITA ziemlich neu.
28.06.2021
Quantensimulation: Messung von Verschränkung vereinfacht
Forscher haben ein Verfahren entwickelt, mit dem bisher kaum zugängliche Größen in Quantensystemen messbar gemacht werden können.
28.06.2021
Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik? Ein Forschungsteam analysierte wichtige Messungen neu. Sie fanden heraus: Ein angeblich sensationeller Effekt existiert gar nicht.
28.06.2021
Paradoxe Wellen: Gefangene Lichtteilchen auf dem Sprung
Physikern ist es gelungen, ein neuartiges Verhalten von Lichtwellen zu beobachten, bei welchem Licht durch eine neue Art von Unordnung auf kleinste Raumbereiche begrenzt wird.
28.06.2021
Isolatoren bringen Quantenbits zum Schwitzen
Schwachleitende oder nichtleitende Materialien haben Innsbrucker Physiker als wichtige Quelle für Störungen in Ionenfallen-Quantencomputern identifiziert.
23.06.2021
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
17.06.2021
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
17.06.2021
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
17.06.2021
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
17.06.2021
Entdeckung der größten Rotationsbewegung im Universum
D