Wilberforce-Pendel

Wilberforce-Pendel

Das Wilberforce-Pendel wechselt zwischen zwei unterschiedlichen Schwingungsweisen.

Das Wilberforce-Pendel ist eine Kombination aus Feder- und Torsionspendel. Es besteht aus einer Masse, die an einer langen Schraubenfeder aufgehängt ist, sodass die Schraubenfeder leicht verdrillt wird wenn die Masse um ihre vertikale Achse gedreht wird. Es handelt sich um ein gekoppeltes Pendel, das in der Physikdidaktik als Beispielexperiment verwendet wird. Es wurde um 1896 vom britischen Physiker Lionel Robert Wilberforce entworfen.[1]

Die Masse an der Feder kann sowohl auf und ab schwingen, als auch wie bei einem Torsionspendel, um seine vertikale Achse hin und zurück rotieren. Mit einer bestimmten Einstellung zeigt sich eine interessante Bewegung, bei der sich ständig eine ausschließliche Rotationsschwingung und eine ausschließliche „auf und ab“ Schwingung gegenseitig ablösen. Die Energie des Pendels wird also abwechselnd von der Translationsschwingung in eine Rotationsschwingung und zurück übertragen, bis die Bewegung aufgrund der Dämpfung langsam abklingt.[2][3]

Trotz seines Namens, führt das Pendel bei einem normalen Betrieb keine horizontale Pendelbewegung aus, wie es bei normalen Pendeln der Fall ist. An der Masse sind meist horizontal gegenüberliegende „Arme“ angebracht, an die sich kleine Gewichte anschrauben lassen, um das Trägheitsmoment für die Torsionsschwingung anzupassen.

Erklärung

Ein Wilberforce-Pendel von 1908

Die zunächst überraschende Eigenschaft resultiert aus einer leichten Kopplung der zwei Bewegungen aufgrund der Geometrie der Feder. Wenn sich die Masse auf und ab bewegt, führt jede Abwärtsbewegung zu einer leichten Abwicklung der Feder, wodurch die Masse ein kleines Drehmoment erfährt. Eine Aufwärtsbewegung der Masse dagegen lässt die Windungszahl der Feder leicht ansteigen, wickelt sie also auf, und gibt damit der Masse ein kleines Drehmoment in die andere Richtung. Jede „auf und ab“ Schwingung führt also zu einem Drehmoment, das sich dann in einer leichten Rechts- und Linksdrehung zeigt. Bei einem Pendel, das nur auf und ab schwingt, wird damit mit jeder Schwingung Energie von der Translationsschwingung in die Rotationsschwingung übertragen, sodass die Amplitude der Rotationsschwingung anwächst und gleichzeitig die der Translationsschwingung abnimmt, bis die Masse nach einiger Zeit ausschließlich eine Rotationsbewegung durchführt.

Ähnlich verhält es sich, wenn die Masse zunächst nur hin und zurück rotiert. Dann führt eine Drehung in einer Richtung dazu, dass die Feder aufgewickelt wird, eine Drehung in der anderen Richtung dazu, dass sie abgewickelt wird. Jede Abwicklung reduziert dabei die Zugkraft der Feder, sodass die Masse weiter absinken kann; eine Aufwicklung lässt die Zugkraft ansteigen, zieht die Masse als weiter nach oben. Jede Rotation sorgt somit dafür, dass die Masse stärker auf- und abschwingt, bis die Energie wieder von der Rotationsbewegung zurück in die Translationsbewegung übertragen ist und sich das Pendel nur noch auf und ab bewegt.

Frequenz der Bewegungsänderung

Das Pendel lässt sich als zwei gekoppelte harmonische Oszillatoren betrachten. Die Bewegung lässt sich jeweils als eine harmonische Schwingung mit variabler Amplitude beschreiben, wobei die Amplituden gegenphasig mit einer sinusförmigen Funktion schwingen.

Die Frequenz, mit der das Pendel zwischen beiden Schwingungsformen wechselt, ist die Differenz der Eigenfrequenzen der einzelnen Schwingungen. Je geringer der Abstand dieser beiden Eigenfrequenzen ist, desto langsamer ist der Wechsel zwischen den beiden Schwingungsformen. Dieses Verhalten, das sich bei allen gekoppelten Pendeln zeigt, lässt sich mit dem akustischen Phänomen einer Schwebung bei Musikinstrumenten vergleichen. Dort werden zwei Sinustöne kombiniert und produzieren so einen Ton mit einer Frequenz, die dem Unterschied der einzelnen Frequenzen entspricht.

Beispielsweise bei einem Wilberforce-Pendel, bei dem die Masse mit Frequenz $ f_\mathrm{T} = 4\,\mathrm{Hz} $ auf- und abschwingt und sich mit einer Frequenz von $ f_\mathrm{R} = 4{,}1\,\mathrm{Hz} $ hin und zurück dreht, liegt die Frequenz $ f_\mathrm{alt} $ und die entsprechende Periode, mit der sich beide Schwingungsformen abwechseln, bei

$ f_\mathrm{alt} = f_\text{R} - f_\mathrm{T} = 0{,}1\; \mathrm{Hz}, $
$ T_\mathrm{alt} = \frac1{f_\mathrm{alt}} = 10\; \mathrm{s}. $

Die Bewegung verändert sich daher innerhalb von fünf Sekunden von einer Translation zur Rotation und zurück zur Translation in den folgenden fünf Sekunden.

Üblicherweise wird das Trägheitsmoment der Masse angepasst, bis die Rotationsfrequenz sehr nahe an der Translationsfrequenz liegt, damit der Übergang zwischen den beiden Schwingungsformen klar erkennbar ist. Dies ist meist durch Auf- und Zurückschrauben der Gewichte an den Armen möglich.

Weblinks

Einzelnachweise

  1. Lionel Robert Wilberforce: On the vibrations of a loaded spiral spring. In: Philosophical Magazine. 38, 1896, S. 386–392. Abgerufen am 9. Januar 2008.
  2. Arnold Sommerfeld: Mechanik der deformierbaren Medien (= Vorlesungen über theoretische Physik. Band II). 6. Auflage. Akademische Verlagsgesellschaft, Leipzig 1970, § 42 Torsion und Biegung bei der Schraubenfeder, S. 286–291.
  3. Richard E. Berg, Marshall, Todd S.: Wilberforce pendulum oscillations and normal modes. In: American Journal of Physics. 59, Nr. 1, 4. Mai, 1990, S. 32–37. doi:10.1119/1.16702. Abgerufen am 3. Mai 2008.

Diese Artikel könnten dir auch gefallen



Die letzten News


11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.