Weyl-Quantisierung

Weyl-Quantisierung

Die Weyl-Quantisierung ist eine Methode in der Quantenmechanik, um systematisch einen quantenmechanischen Hermiteschen Operator umkehrbar auf eine klassische Verteilung im Phasenraum abzubilden. Daher wird sie auch Phasenraum-Quantisierung genannt.

Die dieser Quantisierungsmethode zugrundeliegende wesentliche Korrespondenzabbildung von Phasenraumfunktionen auf Operatoren im Hilbertraum wird Weyl-Transformation genannt. Sie wurde zuerst 1927 von Hermann Weyl[1] beschrieben.

Im Gegensatz zu Weyls ursprünglicher Absicht ein konsistentes Quantisierungsschema zu finden, bildet diese Abbildung nur eine Darstellungsänderung. Sie muss klassische und quantenmechanische Größen nicht verbinden: Die Phasenraum-Verteilung darf auch von der Planckschen Konstante h abhängen. In einigen bekannten Fällen, die einen Drehimpuls beinhalten, ist das so.

Die Umkehrung dieser Weyl-Transformation ist die Wignerfunktion. Sie bildet aus dem Hilbertraum in die Phasenraumdarstellung ab. Dieser umkehrbare Wechsel der Darstellung erlaubt es, Quantenmechanik im Phasenraum auszudrücken, wie es in den 1940er Jahren von Groenewold und Moyal vorgeschlagen wurde.[2][3]

Beispiel

Im Folgenden wird die Weyl-Transformation am 2-dimensionalen Euklidischen Phasenraum dargestellt. Die Koordinaten des Phasenraums seien (q,p); ferner sei f eine Funktion, die überall im Phasenraum definiert ist. Die Weyl-Transformation von f ist durch den folgenden Operator im Hilbertraum gegeben (größtenteils analog zur Delta-Distribution):

$ \Phi [f] = \frac{1}{(2\pi)^2}\iint_{q,\,a} \iint_{p,\,b} f(q,p) \left(e^{i(a(Q-q) +b(P-p))}\right) dq\, dp\, da\, db. $

Nun werden die Operatoren P und Q als Generatoren einer Lie-Algebra, der Heisenberg-Algebra genommen:

$ [P,Q]=PQ-QP=-i\hbar,\, $

Dabei ist $ \hbar $ das reduzierte Plancksche Wirkungsquantum. Ein allgemeines Element einer Heisenberg-Algebra kann geschrieben werden als

$ aQ+bP-i\hbar z.\, $

Die Exponentialfunktion eines Elementes einer Lie-Algebra ist dann ein Element der korrespondierenden Lie-Gruppe:

$ g=e^{aQ+bP-i\hbar z}, $

ein Element der Heisenberg-Gruppe. Gegeben sei eine spezielle Gruppendarstellung Φ der Heisenberggruppe, dann bezeichnet

$ \Phi\left( e^{aQ+bP-i\hbar z} \right)\, $

das Element der entsprechenden Darstellung des Gruppenelements g.

Die Inverse der obigen Weylfunktion ist die Wignerfunktion, welche den Operator Φ zurück zur Phasenraumfunktion f bringt:

$ f(q,p)= 2 \int_{-\infty}^\infty dy~e^{2ipy/\hbar}~ \langle q-y| \Phi [f] |q+y \rangle. $

Im Allgemeinen hängt die Funktion f von der Planck-Konstante h ab und kann quantenmechanische Prozesse gut beschreiben, sofern sie mit dem unten aufgeführten Sternprodukt richtig zusammengesetzt ist.[4]

Zum Beispiel ist die Wignerfunktion eines quantenmechanischen Operators für ein Drehimpulsquadrat (L²) nicht identisch mit dem klassischen Operator, sondern enthält zusätzlich den Term $ - \frac{3}{2}\hbar^2 $, welcher dem nichtverschwindenden Drehimpuls des Grundzustands einer Bohrschen Umlaufbahn entspricht.

Eigenschaften

Die typische Darstellung einer Heisenberg-Gruppe erfolgt durch die Generatoren ihrer Lie-Algebra: Ein Paar selbstadjungierter Operator (hermitesch) auf einem Hilbertraum $ \mathcal{H} $, so dass ihr Kommutator, ein zentrales Element der Gruppe, das Identitätselement auf dem Hilbertraum ergibt (die kanonische Vertauschungsrelation)

$ [P,Q]=PQ-QP=-i\hbar ~ \operatorname{Id}_\mathcal{H}, $

Der Hilbertraum kann als Menge von quadratisch integrierbaren Funktionen über der reellen Zahlengerade (ebene Wellen) oder einer beschränkteren Menge, wie beispielsweise des Schwartz-Raum angenommen werden. Abhängig vom beteiligten Raum, folgen verschiedene Eigenschaften:

  • Wenn f eine reellwertige Funktion ist, dann ist das Abbild der Weyl-Funktion Φ[f] selbst-adjungiert.
  • Wenn f ein Element des Schwartz-Raum ist, dann ist Φ[f] ein Spurklasseoperator.
  • Allgemeiner ist Φ[f] unbeschränkter dicht definierter Operator.
  • Für die Standarddarstellung der Heisenberg-Gruppe über den quadratisch integrierbaren Funktionen, entspricht die Funktion Φ[f] eins-zu-eins dem Schwartz-Raum (als Unterraum der quadratisch integrierbaren Funktionen).

Verallgemeinerungen

Die Weyl-Quantisierung wird in größerer Allgemeinheit in Fällen untersucht, wo der Phasenraum eine Symplektische Mannigfaltigkeit oder möglicherweise eine Poisson-Mannigfaltigkeit ist. Verwandte Strukturen sind zum Beispiel Poisson–Lie-Gruppen und die Kac-Moody-Algebren.

Siehe auch

Referenzen

  1. H.Weyl , "Quantenmechanik und Gruppentheorie", Zeitschrift für Physik, 46 (1927) pp. 1–46, doi:10.1007/BF02055756.
  2. H.J. Groenewold, "On the Principles of elementary quantum mechanics",Physica,12 (1946) pp. 405–460. (engl.)
  3. J.E. Moyal, "Quantum mechanics as a statistical theory", Proceedings of the Cambridge Philosophical Society, 45 (1949) pp. 99–124. (engl.)
  4. R. Kubo, "Wigner Representation of Quantum Operators and Its Applications to Electrons in a Magnetic Field", Jou. Phys. Soc. Japan,19 (1964) pp. 2127–2139, doi:10.1143/JPSJ.19.2127.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.