Wärmeübergangskoeffizient

Wärmeübergangskoeffizient

Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.
Dieser Artikel behandelt die Stoffeigenschaft. Für eine konkrete Geometrie oder ein Bauteil siehe Wärmewiderstand.
Physikalische Größe
Name Wärmeübergangskoeffizient
Formelzeichen $ \alpha,\, h $
Größen- und
Einheitensystem
Einheit Dimension
SI W/(m2 · K) M·T−3·Θ−1

Der Wärmeübergangskoeffizient $ \alpha $ (engl. h für heat transfer coefficient), auch Wärmeübergangszahl oder Wärmeübertragungskoeffizient genannt, ist ein Proportionalitätsfaktor, der die Intensität des Wärmeübergangs an einer Grenzfläche bestimmt. Der Wärmeübergangskoeffizient in W/(m²·K) ist eine spezifische Kennzahl einer Konfiguration von Materialien bzw. von einem Material zu einer Umgebung in Form eines Fluids.

Einzelne Disziplinen, darunter die Bauphysik, nutzen europaweit seit Juli 1999[1] aufgrund international angepasster Normen statt $ \alpha $ das englische Formelzeichen h. Diesem Umstand wird in den entsprechenden Abschnitten Rechnung getragen.

Definition und Bedeutung

Der Wärmeübergangskoeffizient beschreibt die Fähigkeit eines Gases oder einer Flüssigkeit, Energie von der Oberfläche eines Stoffes abzuführen bzw. an die Oberfläche abzugeben. Er hängt unter anderem ab von der spezifischen Wärmekapazität, der Dichte und dem Wärmeleitkoeffizienten des wärmeabführenden sowie des wärmeliefernden Mediums. Die Berechnung des Koeffizienten für Wärmeleitung erfolgt meist über den Temperaturunterschied der beteiligten Medien.

Der Wärmeübergangskoeffizient ist im Gegensatz zur Wärmeleitfähigkeit keine Materialkonstante, sondern – im Falle einer Umgebung − stark abhängig von

Im Bauwesen werden Wärmeübergangskoeffizienten häufig trotzdem als Konstante angenommen bzw. angegeben. Wegen ihrer Abhängigkeit von der Strömungsgeschwindigkeit ist dies genau genommen falsch, jedoch relativ unbedenklich, weil im Bauwesen der Hauptwärmewiderstand nicht im Wärmeübergang liegt, sondern im Wärmedurchgang durch eine isolierte Wand.

Berechnung bei Wärmeübertragung

$ \begin{alignat}{2} Q & = \alpha \cdot A \cdot (T_1 - T_2) \cdot \Delta t \quad \Leftrightarrow \quad \dot{Q} & = \alpha \cdot A \cdot (T_1 - T_2)\\ \Leftrightarrow \alpha & = \frac{Q}{A \cdot (T_1 - T_2) \cdot \Delta t} & = \frac{\dot{Q}}{A \cdot (T_1 - T_2)} \end{alignat} $

mit

  • Q: übertragene Wärmemenge
  • A: betrachtete Kontaktfläche / benetzte Oberfläche
  • T1, T2: Temperaturen der beteiligten Medien
  • Δt: betrachtetes Zeitintervall
  • $ \dot{Q} $: Wärmestrom

Die abgeleitete Dimension des Wärmeübergangskoeffizienten in SI-Einheiten ist $ \frac {\mathrm{W}} {\mathrm{m^2 \cdot K}} = \frac {\mathrm{kg}} {\mathrm{s^3 \cdot K}} $.

Je nach Richtung der Wärmeübertragung wird ΔQ einen positiven oder negativen Wert einnehmen.

Für Grenzschichten zwischen festen Materialien oder ruhenden Fluiden kann als absolute Größe – im Sinne einer Materialkonstante unabhängig von der Fläche – der Wärmewiderstand $ R_{th} $ angegeben werden:

$ R_{th} = \frac{1}{\alpha \cdot A} = \frac{(T_1 - T_2) \cdot \Delta t}{Q} $ in $ \mathrm{\frac{K}{W}} $ (mit $ \mathrm{K} $ - Kelvin, $ \mathrm{W} $ - Watt).

Thermodynamische Berechnungen

Lokaler Wärmeübergangskoeffizient

Lokale Werte $ \alpha(x) $ des Wärmeübergangskoeffizienten sind für Computersimulationen und theoretische Betrachtungen wichtig. In einer dünnen Grenzschicht an der Wandoberfläche ist die Strömung laminar und der Wärmetransport erfolgt überwiegend durch Wärmeleitung. In diesem Fall ergibt sich der lokale Wärmeübergangskoeffizient zu

$ \alpha_\mathrm{GS} = \frac{\lambda}{\delta_\mathrm{T}} $

mit

  • der Wärmeleitfähigkeit $ \lambda $ des Fluids bei der mittleren Temperatur $ T_\mathrm{m} = \frac{T_\mathrm{F} + T_\mathrm{S}}{2} $
    • der Fluidtemperatur $ T_\mathrm{F} $ im turbulent durchmischten Bereich, d. h. außerhalb der laminaren Grenzschicht
    • der lokalen Oberflächentemperatur $ T_\mathrm{S} $ der Wand (S = solid, Festkörper bzw. surface, Oberfläche).
  • der Dicke $ \delta_T $ der thermischen Grenzschicht. Bei Gasen hat $ \delta_\mathrm{T} $ etwa die gleiche Größe wie die Dicke $ \delta $ der Strömungsgrenzschicht. Das Grenzschichtverhältnis ist eine reine Funktion der Prandtl-Zahl und damit für das Fluid charakteristisch. In guter Näherung (Abweichung kleiner als 3 %) gilt:
$ \frac{\delta_\mathrm{T}}{\delta}=\frac{1}{\sqrt[3]{Pr}} $

Die lokale Wärmestromdichte $ \dot{q}_\mathrm{GS} $ durch die Grenzschicht ergibt sich aus

$ \Rightarrow \dot{q}_\mathrm{GS} = \frac{\dot Q_\mathrm{GS}}{A} = \alpha_\mathrm{GS} \cdot (T_\mathrm{F} - T_\mathrm{S}). $

Mittlerer Wärmeübergangskoeffizient

Für technische Berechnungen werden meist mittlere Wärmeübergangskoeffizienten verwendet, die für eine gegebene Geometrie (Baugruppe) mit dem Unterschied der Fluidtemperatur am Einlauf zur mittleren Wandtemperatur definiert werden.

Der mittlere Wärmeübergangskoeffizient ist der dimensionslosen Nußelt-Zahl $ \mathrm{Nu} $ proportional, die bei gegebener Geometrie eine reine Funktion der Reynolds- und der Prandtl-Zahl ist:

$ \alpha_m = \frac{\lambda}{L} \cdot \mathrm{Nu}(\mathrm{Re},\mathrm{Pr}) $

mit

  • der Wärmeleitfähigkeit $ \lambda $ des Fluids
  • der charakteristischen Länge $ L $ (z. B. der Durchmesser einer Düse)
  • der dimensionslosen Reynolds-Zahl $ \mathrm{Re} = \frac{v \cdot L \cdot \rho}{\eta} $
    • der charakteristischen Strömungsgeschwindigkeit $ v $ des Fluids (z. B. die mittlere Austrittsgeschwindigkeit aus einer Düse)
    • der Dichte $ \rho $ bei der arithmetisch gemittelten Temperatur des Fluids (s. o.)
    • der dynamischen Viskosität $ \eta $
  • der dimensionslosen Prandtl-Zahl $ \mathrm{Pr} = \frac{\eta \cdot c_p}{\lambda} $

Die Darstellung des mittleren Wärmeübergangskoeffizienten durch die Nußelt-Zahl stellt ein Ähnlichkeitsgesetz dar, bei dem stets die jeweilige Definition der charakteristischen Länge und der charakteristischen Geschwindigkeit mit angegeben werden muss.

Freie Konvektion

Ist die Strömung bedingt durch freie Konvektion, so hängen der Wärmeübergangskoeffizient und die Nußelt-Zahl von der Grashof-Zahl ab.

Näherungsweise lässt sich der Wärmeübergangskoeffizient in diesem Fall mit folgenden Zahlenwertgleichungen ermitteln:

  • Medium Luft: $ \alpha= 12 \cdot \sqrt{v} + 2 $
  • Medium Wasser: $ \alpha = 2100 \cdot \sqrt{v} + 580, $

jeweils mit der Strömungsgeschwindigkeit $ v $ des Mediums in Metern pro Sekunde.

Wärmestrahlung

Die Berechnung des Wärmeübergangskoeffizienten durch Wärmestrahlung gestaltet sich sehr viel schwieriger als im Falle der Konvektion.

Für den Wärmeübergangskoeffizient durch Strahlung eines schwarzen Körpers gilt:

Temperatur in °C −10 0 10 20 30
$ h_\mathrm{s0} $ in W/(m²·K)[2] 4,1 4,6 5,1 5,7 6,3
$ R_\mathrm{se} = 1 / h_\mathrm{s0} $ 0,24 0,22 0,20 0,18 0,16

Wärmeübergangskoeffizient und -widerstand im Bauwesen

Im Bauwesen wurde vor einiger Zeit die englische Symbolik eingeführt [2]. Daher findet sich in bauphysikalischen Formeln und Berechnungen seither die von der sonst gebräuchlichen Schreibung abweichende Bezeichnung h.

h ist definiert als die Wärmemenge, die bei ruhender Luft und einem Temperaturunterschied von 1 Kelvin (zwischen Luft und Bauteiloberfläche) über eine Fläche von 1 m² innerhalb von 1 Sekunde übertragen wird. Sie addiert sich aus einem konvektiven hc und einem Strahlungsanteil hr; der Anteil aus Konduktion wird aufgrund der geringen Wärmeleitfähigkeit der Luft vernachlässigt.

$ h = h_r + h_c\ $ [2]

Ein vereinfachtes Rechenverfahren zur Ermittlung von hr und hc findet sich in ISO6946 Anhang A. hr wird dort nach dem Stefan-Boltzmann-Gesetz aus dem Wärmeübergangskoeffizienten aufgrund Strahlung des schwarzen Körpers und dem Emissionsgrad des jeweiligen Oberflächenmaterials berechnet; hc ist abhängig von der räumlichen Orientierung des Wärmestroms sowie bei außenliegenden Oberflächen von der Windgeschwindigkeit. Verbindliche Werte sowohl für hc als auch für die Korrekturwerte unterschiedlicher Windgeschwindigkeiten werden - ohne Angabe der Herleitung - in Anhang A der Norm als Konstanten angegeben. Auch ein stark vereinfachendes Korrekturverfahren für nicht ebene Oberflächen wird in der Norm festgelegt.

Der Kehrwert 1/h (früher: 1/α) ist hier (abweichend von der in der Physik gebräuchlichen dimensionslosen Verwendung als Materialkonstante) lt. Norm der Wärmeübergangswiderstand Rs in (m²·K)/W.[2]

  • Je höher der Wärmeübergangskoeffizient, desto schlechter ist die Wärmedämmeigenschaft der Stoffgrenze.
  • Je höher der Wärmeübergangswiderstand, desto besser ist die Wärmedämmeigenschaft.

Wärmeübergangskoeffizient bei thermisch aktiven Raumumfassungen

Bei der thermischen Bauteilaktivierung – sei es als stationär wirkende Heiz-/Kühlflächen oder als instationär arbeitende Massivspeicherkörper jeweils in die Raumumfassungen (Decken, Fußböden und/oder Wänden) integriert – ist der Gesamtwärmeübergangskoeffizient (Konvektion plus Strahlung) aufgrund der relativ kleinen Temperaturdifferenzen zwischen Oberfläche und Raum für die Wärmestromdichte sehr bedeutungsvoll. Die Komplexität der Mischkonvektion (freie und erzwungene Konvektion), die Überlagerung mit dem Wärmetransport durch Strahlung und das Vorhandensein von örtlich unterschiedlichen Luft- und Strahlungstemperaturen im Raum bezogen auf die thermisch aktiven Bauteiloberflächen führen zu Schwierigkeiten bei der Ermittlung der Gesamtwärmeübergangskoeffizienten und zu unterschiedlichen Ergebnisinterpretationen. Vorteilhaft gestaltet sich in der Praxis das Arbeiten mit den sogenannten Basiskennlinien, wie beispielsweise bei der normierten Leistungsberechnung für die Fußbodenheizung eingeführt und auch für die praktische Kühldeckenauslegung verwendet, da nur die Raumtemperatur als Bezugsgröße auftritt. Die Basiskennlinie gibt die Wärmestromdichte der Heiz-/Kühlfläche in Abhängigkeit von der Flächenlage im Raum an. In der Zeitschrift Gesundheitsingenieur[3] wurde ein allgemeingültiger Zusammenhang zwischen Gesamtwärmeübergangskoeffizienten und Basiskennlinien hergestellt.[4]

Normen

  • EN ISO 6946, als DIN :1996-11 Bauteile - Wärmedurchlaßwiderstand und Wärmedurchgangskoeffizient - Berechnungsverfahren
  • EN ISO 7345, als DIN :1996-01 Wärmeschutz - Physikalische Größen und Definitionen
  • EN ISO 9346, als DIN :1996-08: Wärmeschutz - Stofftransport - Physikalische Größen und Definitionen

Literatur

  • O. Krischer, W. Kast: Die wissenschaftlichen Grundlagen der Trocknungstechnik. Springer-Verlag, ISBN 3-540-08280-8.
  • H. Martin: Advances in Heat Transfer. Vol. 13. academic Press, New York/San Francisco/London 1977, S. 1–60.
  • S. Polat: Drying Technology. 11, Nr. 6, 1993, S. 1147–1176.
  • R. Viskanta: Experimental Thermal and Fluid Science. 6, 1993, S. 111–134.
  • B. Glück: Wärmeübergangskoeffizienten an thermisch aktiven Bauteiloberflächen und der Übergang zu Basiskennlinien für die Wärmestromdichte. In: Gesundheitsingenieur. Heft 1, 2007, S. 1–10 (Eine Kurzfassung befindet sich im kostenlos erhältlichen Teilbericht Innovative Wärmeübertragung und Wärmespeicherung des vom PTJ betreuten Forschungsverbundkomplexes LowEx, Bericht_LowEx, 2008, Seite 18 ff.; zur Website).

EN ISO 6946:

  • M. Reick, S. Palecki: Auszug aus den Tabellen und Formeln der DIN EN ISO 6946. Institut für Bauphysik und Materialwissenschaft. Universität GH Essen. Stand: Oktober 1999. (Webdokument, PDF; 168 KB).
  • G. Bittersmann: Wärmeübertragung durch Bauteile (k-Wert) nach ÖNORM EN ISO 6946. In: LandesEnergieVerein Steiermark LEV (Hrsg.): Wärmebilanzen und Energiekennzahlen Juli 2000. Graz Juli 2000, Wärmeübergangswiderstände, S. 2 f. (pdf, lev.at [abgerufen am 21. Januar 2010]).

Einzelnachweise

  1. W. Kosler: Manuskript zur E DIN 4108-3:1998-10. Deutsches Institut für Normung, 28. Oktober 1998.
  2. 2,0 2,1 2,2 2,3 EN ISO 6946; siehe Normen und Literatur
  3. B. Glück: Wärmeübergangskoeffizienten an thermisch aktiven Bauteiloberflächen und der Übergang zu Basiskennlinien für die Wärmestromdichte. In: Gesundheitsingenieur. Heft 1, 2007, S. 1–10.
  4. B. Glück: Wärmeübergangskoeffizienten an thermisch aktiven Bauteiloberflächen und der Übergang zu Basiskennlinien für die Wärmestromdichte. In: Gesundheitsingenieur. Heft 1, 2007, S. 1–10 (Eine Kurzfassung befindet sich im kostenlos erhältlichen Teilbericht Innovative Wärmeübertragung und Wärmespeicherung des vom PTJ betreuten Forschungsverbundkomplexes LowEx, Bericht_LowEx, 2008; zur Website).

Diese Artikel könnten dir auch gefallen



Die letzten News


23.06.2021
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
17.06.2021
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
17.06.2021
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
17.06.2021
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
17.06.2021
Entdeckung der größten Rotationsbewegung im Universum
D
13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.
13.06.2021
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
13.06.2021
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.