Versuch von Stern

Mit dem Versuch von Stern gelang Otto Stern im Jahre 1920 zum ersten Mal eine direkte Messung der Geschwindigkeit von Atomen.

Versuchsprinzip

In einem hochevakuierten Gefäß befindet sich ein mit Silber überzogener Platindraht. Dieser wird so elektrisch geheizt, dass das Silber verdampft. Die Silberatome bewegen sich radial nach allen Seiten mit einer temperaturspezifischen Geschwindigkeit. Durch eine schmale Blende wird ein feiner Strahl von Silberatomen fokussiert, der bei ruhender Apparatur den Schirm an der Stelle S0 schwärzen würde.

Zur Messung der Atomgeschwindigkeit lässt man die ganze Apparatur mit der Frequenz $ f $ um den Draht rotieren. Auch dann ist die Bahn eines Atoms geradlinig (vom Laborsystem aus betrachtet). Vom mitrotierenden Bezugssystem aus betrachtet erscheint die Bahn jedoch gekrümmt, der Strahl wird also scheinbar um die Strecke $ \Delta s $ abgelenkt. Je nach Drehrichtung wird der Schirm an einer Stelle S1 oder S2 geschwärzt.

Versuchsergebnis

Schwärzungsbild des Versuchs von Stern

Die Grafik zeigt das Schwärzungsbild, wie man es im Versuch erhält, wenn die Apparatur zuerst in Links- und dann in Rechtsdrehung versetzt wird. Die beim Stern'schen Versuch gemessenen Geschwindigkeiten stimmen gut mit den durch die Theorie vorhergesagten Geschwindigkeiten überein. Die Unschärfe der beiden Linien S1 und S2 zeigt, dass die Atome verschiedene Geschwindigkeiten haben. Diese Geschwindigkeitsverteilung wurde im 19. Jahrhundert von James Clerk Maxwell und Ludwig Boltzmann als die Maxwell-Boltzmann-Verteilung theoretisch vorhergesagt.

Berechnung der Atomgeschwindigkeit

Im mitrotierenden System ist die Geschwindigkeitskomponente eines Silberatoms in radialer Richtung durch die Geschwindigkeit $ v $ gegeben, mit der das Atom aus dem Draht austritt. Die Zeit $ \Delta t $ vom Passieren der Blende bis zum Auftreffen auf dem Schirm ist deshalb

$ \Delta t={\frac {l}{v}} $.

Die Ablenkung $ \Delta s $ ergibt sich aus der Proportion

$ {\frac {\Delta s}{2\pi \cdot R}}={\frac {\Delta t}{T}} $,

wobei $ T={\frac {1}{f}} $ die Dauer für eine ganze Umdrehung der Apparatur bezeichnet.

Hieraus folgt

$ \Delta s={\frac {2\pi \cdot R}{T}}\cdot \Delta t={\frac {2\pi \cdot R\cdot l}{T\cdot v}}={\frac {2\pi \cdot R\cdot l\cdot f}{v}} $

bzw.

$ v={\frac {2\pi \cdot R\cdot l\cdot f}{\Delta s}} $

Literatur

  • Horst Schmidt-Böcking, Wolfgang Trageser: Ein fast vergessener Pionier. Die von Otto Stern entwickelte Molekularstrahlmethode ist essenziell für Physik und Chemie. In: Physik Journal. Wiley-VCH Verlag Chemie, März 2012, S. 47–51 (pro-physik.de [PDF]).

Weblinks

Die News der letzten Tage

22.06.2022
Teilchenphysik
Lange gesuchtes Teilchen aus vier Neutronen entdeckt
Ein internationales Forschungsteam hat nach 60 Jahren vergeblicher Suche erstmals einen neutralen Kern entdeckt – das Tetra-Neutron.
22.06.2022
Festkörperphysik
Dunklen Halbleiter zum Leuchten gebracht
Ob Festkörper etwa als Leuchtdioden Licht aussenden können oder nicht, hängt von den Energieniveaus der Elektronen im Kristallgitter ab.
15.06.2022
Exoplaneten
Zwei neue Super-Erden in der Nachbarschaft
Unsere Sonne zählt im Umkreis von zehn Parsec (33 Lichtjahre) über 400 Sterne und eine stetig wachsende Zahl an Exoplaneten zu ihren direkten Nachbarn.
15.06.2022
Quantenphysik
Quantenelektrodynamik 100-fach genauerer getestet
Mit einer neu entwickelten Technik haben Wissenschaftler den sehr geringen Unterschied der magnetischen Eigenschaften zweier Isotope von hochgeladenem Neon in einer Ionenfalle mit bisher unzugänglicher Genauigkeit gemessen.
13.06.2022
Quantenphysik
Photonenzwillinge ungleicher Herkunft
Identische Lichtteilchen (Photonen) sind wichtig für viele Technologien, die auf der Quantenphysik beruhen.
10.06.2022
Kometen und Asteroiden | Sonnensysteme
Blick in die Kinderstube unseres Sonnensystems
Asteroiden sind Überbleibsel aus der Kinderstube unseres Sonnensystems und mit rund 4,6 Milliarden Jahren ungefähr so alt wie das Sonnensystem selbst.
07.06.2022
Galaxien | Sterne
Das Ende der kosmischen Dämmerung
Eine Gruppe von Astronomen hat das Ende der Epoche der Reionisation auf etwa 1,1 Milliarden Jahre nach dem Urknall genau bestimmt.