Verdampfungswärme

Verdampfungswärme

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst.
Für praktisch alles außer den (unten in den Tabellen) gegebenen Daten

Die Verdampfungswärme bzw. Verdampfungsenergie ΔQv ist die Wärmemenge, die benötigt wird, um eine bestimmte Menge einer Flüssigkeit vom flüssigen in den gasförmigen Aggregatzustand zu bringen (Verdampfen). Die Verdampfungswärme ist ein wichtiger Kennwert in der Dampfdruckkurve.

Die meist recht hohe Wärmemenge wird technisch zur Kühlung angewendet.

Beim umgekehrten Prozess (Kondensation) wird genau diese Wärmemenge wieder als Kondensationswärme frei.

Abtrennarbeit

Für den Übergang vom flüssigen in den gasförmigen Aggregatzustand muss – auch falls sich die Flüssigkeit schon am Siedepunkt befindet – Energie zugeführt werden. Diese Abtrennarbeit dient zur Überwindung der Anziehungskräfte zwischen den Flüssigkeitsteilchen. Dabei geht die aufgewandte Energie aufgrund des Energieerhaltungssatzes nicht verloren, sondern wird zu einem Teil der im Gas enthaltenen inneren Energie U.

Bei verflüssigten Edelgasen ist die Abtrennarbeit am kleinsten, da nur Van-der-Waals-Kräfte überwunden werden müssen, bei anderen Flüssigkeiten kommen Dipolmoment oder Wasserstoffbrückenbindung hinzu. Noch höher ist die Verdampfungswärme bei den Metallen (starke metallische Bindung) und am höchsten bei den Salzen wegen der vergleichsweise extrem starken Ionenbindung.

Gleichgewichtsänderung am Beispiel des Wassers

Beispiel: Um ein Kilogramm Wasser bei 100 °C und 1013 mbar zu verdampfen, ist die Abtrennarbeit ΔU = 2088 kJ aufzuwenden. Die Abtrennarbeit ist für Wasser wegen der Wasserstoffbrückenbindungen zwischen den Wassermolekülen relativ hoch.

Verschiebungsarbeit im isobaren Fall

Außerdem hängt der Betrag der zuzuführenden Verdampfungswärme von den Prozessbedingungen ab. Geschieht die Verdampfung oder Verdunstung isobar bei konstantem Druck p, wie es oft der Fall ist, so muss das entstehende Gas, um sich vom Flüssigkeitsvolumen VF auf das Gasvolumen VG auszudehnen, gegen den äußeren Druck p die Verschiebungsarbeit p·(VG-VF) = p ΔV leisten. Die zugeführte Energie wird also sowohl für Abtrennarbeit als auch für Verschiebungsarbeit verbraucht: ΔQv = ΔU + p·ΔV.

Beispiel: Bei 100 °C und 1013 mbar hat ein Kilogramm Wasser im flüssigen Zustand ein Volumen von 1,04 dm3 und im gasförmigen Zustand ein Volumen von 1,673 m3. Die Wasser-Konzentration in der Gasphase beträgt bei 100 °C dann 598 g/m³. (siehe Dampfdruckkurve)

Die Sättigungsmenge von Wasserdampf in Luft in Funktion der Temperatur.

Die Volumenzunahme beim Verdampfen beträgt also 1,672 m3 und die bei der Ausdehnung gegen den äußeren Luftdruck geleistete Verschiebungsarbeit 169 kJ. Die unter isobaren Verhältnissen bei 100 °C und 1013 mbar pro kg Wasser zuzuführende Verdampfungswärme beträgt daher ΔQv = ΔU + p·ΔV = 2088 kJ + 169 kJ = 2257 kJ = 2,26 MJ.

Unter anderen Bedingungen, wie z.B. Verdampfen ins Vakuum, Verdampfen bei konstantem Volumen usw. gelten andere Gesetzmäßigkeiten.

Verdampfungswärme und Verdampfungsenthalpie

Die aus den Zustandsgrößen U, p und V gebildete Zustandsgröße H = U + p·V heißt Enthalpie. Ändern sich U, p und V um die Beträge ΔU, Δp und ΔV, so ändert sich H um den Betrag ΔH = ΔU + V·Δp + p·ΔV. Bleibt der Druck, wie im hier betrachteten Fall, konstant, so ist ΔH = ΔU + p·ΔV.

Im isobaren (Druck = konstant) Fall ist die zugeführte und auf Abtrenn- sowie Verschiebungsarbeit verteilte Energie ΔQv = ΔU + p·ΔV also gleich der Enthalpieänderung des Systems

ΔQv = ΔU + p·ΔV = ΔHv

und wird dann auch Verdampfungsenthalpie ΔHv genannt.

Beispiel: die Verdampfungsenthalpie von 1 kg Wasser beträgt 2257 kJ (bei 100 °C).

Verwendung des Formelzeichens ΔQv betont, dass die Energiezufuhr in Form von Wärme geschieht, Verwendung des Formelzeichens ΔHv betont, dass die Zustandsgröße Enthalpie des Systems verändert wird.

Zahlreiche alltägliche Verdampfungs- und Verdunstungsvorgänge finden unter isobaren Verhältnissen statt, weil die betreffenden Systeme dem atmosphärischen Luftdruck ausgesetzt sind. Die aufzuwendende Verdampfungswärme ist dann insbesondere eine Verdampfungsenthalpie und ist unter dieser Bezeichnung für viele Stoffe tabelliert.

Die stoffspezifische Verdampfungsenthalpie hängt von der Temperatur, nicht dagegen vom äußeren Luftdruck ab. Tabellenwerte finden sich meist für die Siedetemperatur des Stoffes (Dampfdruck des Stoffs ist dann 1013 mbar). Die spezifische Verdampfungswärme bezieht sich auf 1 kg (bzw. 1 g), die Verdampfungsenthalpie auf 1 mol des verdampfenden Stoffs.

  • Bestimmung der Verdampfungswärme

Für beliebige Temperaturen kann die molare Verdampfungsenthalpie über den gemessenen Dampfdruck (des zu destillierenden Stoffs) mit der Beziehung von Clausius-Clapeyron berechnet werden (Sättigungsdampfdruck).

Temperaturen berechneter Verdampfungsenthalpie für Wasser

Tempe-
ratur
[°C]
Verdampfungs-
enthalpie
[kJ mol−1]
Bemerkung
000 45,054
025 43,990 "Standardverdampfungsenthalpie"
040 43,350
060 42,482
080 41,585
100 40,657 Normalsiedepunkt = 2,26 MJ/kg Wasser
120 39,684 alle Messungen >100 °C mit komprimiertem Wasserdampf
140 38,643
160 37,518
180 36,304 ca. 10 bar Wasserdampf
200 34,962
220 33,468
240 31,809
260 29,930
280 27,795
300 25,300
320 22,297
340 18,502
360 12,966
374 02,067 annähernd kritische Temperatur

Die molare Verdampfungsenthalpie (in kJ/mol) kann in die spezifische Verdampfungsenthalpie (in kJ/g) umgerechnet werden, indem man sie durch die molare Masse (hier: 18,02 g/mol für Wasser) teilt.

Die molare Verdampfungsenthalpie von Wasser kann im Temperaturbereich von 273 bis 473 K (0 bis 200 °C) durch folgende empirische Formel berechnet werden:

$ H_v \left[\mathrm{\frac{kJ}{mol}}\right] = 50{,}09 - 0{,}9298 \cdot \frac{T}{1000} - 65{,}19 \cdot \left(\frac{T}{1000}\right)^2. $

Kondensationswärme

Kondensiert das Gas unter denselben Bedingungen wieder, so wird die zum Verdampfen aufgewandte Verdampfungswärme in Form der betragsmäßig identischen Kondensationswärme auch wieder frei. Man spricht dann anschaulich davon, dass diese Energie in Form nicht fühlbarer Latentwärme im Gas gespeichert gewesen sei. Diese Ausdrucksweise ist jedoch irreführend, da die Verdampfungswärme beim Verdampfen zum Teil in innere Energie überführt und zum Teil als mechanische Arbeit an die Umgebung abgegeben wird. Bei keiner dieser Energieformen handelt es sich um Wärme.

Sublimationswärme

Bei der Sublimation (Phasenumwandlung von fest nach gasförmig) spricht man von Sublimationswärme, welche zusätzlich zur Verdampfungswärme auch die Schmelzwärme des Stoffes beinhaltet. Auch Wasser kann sublimieren, daher trocknet Wäsche auch bei Temperaturen unter 0 °C.

Anwendungen

Die Verdampfungsenergie wird vor allem zum Wärmetransport genutzt.

  • Siedekühlung
  • Funktionsgrundlage des Kühlturms („Rieselkühler“)
  • stromlos betreibbare „Verdunstungs-Kühlschränke“ [1]
  • Weinkühler
  • die Kühlung z. B. des menschlichen Körpers durch Schwitzen.
  • Kältemaschine/Wärmepumpe: die Verdampfungswärme wird an der (zu) kühlenden Seite aufgenommen (Verdampfer) und an der (zu) heizenden Seite abgegeben (Kondensation).
  • Bei der Heizung durch Verbrennung werden feste oder flüssige Brennstoffe ebenfalls in den Gaszustand versetzt, daher muss die Verdampfungswärme aufgebracht werden. Brennwertkessel können diese teilweise zurückgewinnen.

Negativbeispiele sind u.a.:

  • Verdunstungskälte:
    • weiteres Abkühlen der Autoscheiben bei fahrtwindbegünstigter Verdunstung alkoholhaltiger Schweibenwaschzusätze; daher müssen diese Mischungen für sehr viel tiefere Temperaturen ausgelegt sein als die Außentemperatur im Winter
    • Frieren bei nasser Haut oder Kleidung
    • Bei der Entnahme von Gas aus Flüssiggasbehältern (Kohlendioxid, Stickstoff, Propangas usw.) kühlen die Rohrleitungen stark ab und müssen oft z.B. mittels Metallrippen durch Konvektion der Umgebungsluft erwärmt werden.
  • Kondensationswärme:
    • Bei der Verflüssigung von Gasen müssen hohe Energiemengen eingesetzt werden.
    • Die Dampfmaschine und auch das Gas-und Dampfkraftwerk (GuD) haben eine um die Verdampfungswärme des Wassers verminderten Wirkungsgrad, weil die Abwärme des Kondensators (falls vorhanden) meist nicht genutzt wird.

Übersicht Verdampfungsenthalpien der chemischen Elemente

Spezifische Verdampfungsenthalpie ΔHv [kJ/g] und die molare Verdampfungsenthalpie [kJ/mol] der reinen chemischen Elemente für die Siedetemperatur des Elements und einen Druck von 1013 hPa. Alle Angaben wurden von den jeweiligen Datenübersichten der im Einzelnen genannten Elemente übernommen.

Hauptgruppenelemente:

chemisches Element molare Masse [g/mol] Siede­temp. [°C] ΔHv [kJ/mol] ΔHv [kJ/g]
1. Hauptgruppe
Wasserstoff (H2)[2] 2,016 −253 0,90 0,446
Lithium[3] 6,941 1342 146 21,0
Natrium[4] 22,99 883 97,0 4,22
Kalium[5] 39,10 759 79,9 2,04
Rubidium[6] 85,47 688 72,2 0,845
Cäsium[7] 132,9 705 67,7 0,510
Francium[8] 223,0 677 64 0,29
2. Hauptgruppe
Beryllium[9] 9,012 2477 292 32,4
Magnesium[10] 24,33 1090 127 5,24
Calcium[11] 40,08 1484 154 3,83
Strontium[12] 87,62 1382 144 1,64
Barium[13] 137,3 1640 142 1,03
Radium[14] 226,0 1737 137 0,605
3. Hauptgruppe
Bor[15] 10,81 3927 490 45,3
Aluminium[16] 26,98 2467 293 10,9
Gallium[17] 69,72 2204 259 3,71
Indium[18] 114,8 2072 232 2,02
Thallium[19] 204,4 1473 164 0,803
4. Hauptgruppe
Kohlenstoff (subl.)[20] 12,01 4850 717 59,5
Silizium[21] 28,09 2355 384 13,7
Germanium[22] 72,64 2820 331 4,56
Zinn[23] 118,7 2602 296 2,49
Blei[24] 207,2 1749 178 0,858
5. Hauptgruppe
Stickstoff (N2)[25] 28,02 −196 5,59 0,199
Phosphor[26] 30,97 277 12,1 0,392
Arsen (subl.)[27] 74,92 616 34,8 0,464
Antimon[28] 121,8 1587 77,1 0,634
Bismut[29] 209,0 1564 105 0,502
6. Hauptgruppe
Sauerstoff (O2)[30] 32,00 −183 6,82 0,213
Schwefel[31] 32,07 445 9,6 0,30
Selen[32] 221 684,6 26,3 0,333
Tellur[33] 127,6 450 52,6 0,412
Polonium[34] 209,0 962 120 0,574
7. Hauptgruppe
Fluor (F2)[35] 38,00 −188 6,54 0,172
Chlor (Cl2)[36] 70,90 −34 20,4 0,288
Brom (Br2)[37] 159,8 +59 29,6 0,193
Iod (I2)[38] 253,8 +184 41,9 0,164
Astat[39] 210,0 +337 30 0,14
8. Hauptgruppe
Helium[40] 4,003 −269 0,084 0,0211
Neon[41] 20,18 −246 1,73 0,0859
Argon[42] 39,95 −186 6,45 0,161
Krypton[43] 83,80 −153 9,03 0,108
Xenon[44] 131,3 −108 12,6 0,0962
Radon[45] 222,0 −62 16,4 0,0739

Nebengruppenelemente: (alle Daten konsistent mit den bei den einzelnen Elementen genannten. Die spezifische Verdampfungsenthalpie wurde aus der molaren Verdampfungsenthalpie berechnet; sie gelten am Siedepunkt der Elemente)

chemisches Element molare Masse [g/mol] Siede­temp. [°C] ΔHv [kJ/mol] ΔHv [kJ/g]
Scandium[46] 44,96 2830 314 6,99
Titan[47] 47,87 3287 421 8,80
Vanadium[48] 50,94 3409 452 8,87
Chrom[49] 52,00 2672 344 6,62
Mangan[50] 54,94 1962 226 4,11
Eisen[51] 55,85 2750 350 6,26
Cobalt[52] 58,93 2927 377 6,39
Nickel[53] 58,69 2913 370 6,31
Kupfer[54] 63,55 2567 300 4,73
Zink[55] 65,41 907 115 1,76
Yttrium[56] 88,91 3336 363 4,08
Zirconium[57] 91,22 4409 591 6,47
Niob[58] 92,91 4744 697 7,50
Molybdän[59] 95,94 4639 598 6,23
Technetium[60] 98,91 4877 660 6,67
Ruthenium[61] 101,1 4150 595 5,89
Rhodium[62] 102,9 3695 493 4,79
Palladium[63] 106,4 2963 357 3,35
Silber[64] 107,9 2162 251 2,32
Cadmium[65] 112,4 767 100 0,890
Lanthan[66] 138,9 3457 414 2,98
Cer[67] 140,1 3426 414 2,95
Praseodym[68] 140,9 3520 297 2,11
Neodym[69] 144,2 3100 273 1,89
Promethium[70] 146,9 3-3500 290 1,97
Samarium[71] 150,4 1803 166 1,11
Europium[72] 152,0 1527 144 0,944
Gadolinium[73] 157,3 3250 359 2,29
Terbium[74] 158,9 3230 331 2,08
Dysprosium[75] 162,5 2567 230 1,42
Holmium[76] 164,9 2695 241 1,46
Erbium[77] 167,3 2510 193 1,15
Thulium[78] 168,9 1947 191 1,13
Ytterbium[79] 173,0 1194 127 0,733
Lutetium[80] 175,0 3395 356 2,03
Hafnium[81] 178,5 4603 575 3,22
Tantal[82] 180,9 5458 743 4,11
Wolfram[83] 183,8 5555 824 4,48
Rhenium[84] 186,2 5596 715 3,84
Osmium[85] 190,2 5012 628 3,30
Iridium[86] 192,2 4428 604 3,14
Platin[87] 195,1 3827 510 2,61
Gold[88] 197,0 2856 334 1,70
Quecksilber[89] 200,6 357 59,2 0,295
Actinium[90] 227,0 3200 293 1,29
Thorium[91] 232,0 4788 514 2,22
Protactinium[92] 231,0 4027 470 2,03
Uran[93] 238,0 4134 423 1,78
Neptunium[94] 237,0 3902 k.A.
Plutonium[95] 244,1 3327 325 1,33
Americium[96] 243,1 2607 239 0,981
Curium[97] 247,1 3110 k.A.

Einzelnachweise

  1. Verdunstungskühlschrank
  2. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el1.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  3. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el3.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  4. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el11.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  5. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el19.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  6. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el37.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  7. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el55.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  8. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el87.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  9. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el4.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  10. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el12.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  11. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el20.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  12. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el38.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  13. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el56.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  14. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el88.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  15. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el5.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  16. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el13.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  17. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el31.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  18. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el49.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  19. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el81.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  20. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el6.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  21. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el14.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  22. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el32.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  23. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el50.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  24. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el82.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  25. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el7.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  26. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el15.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  27. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el33.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  28. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el51.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  29. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el83.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  30. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el8.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  31. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el16.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  32. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el34.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  33. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el52.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  34. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el84.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  35. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el9.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  36. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el17.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  37. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el35.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  38. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el53.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  39. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el85.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  40. Yiming Zhang, Julian R. G. Evans, Shoufeng Yang: Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks. In: Journal of Chemical & Engineering Data. 56, 2011, S. 328–337; doi:10.1021/je1011086.
  41. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el10.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  42. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el18.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  43. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el36.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  44. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el54.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  45. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el86.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  46. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el21.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  47. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el22.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  48. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el23.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  49. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el24.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  50. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el25.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  51. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el26.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  52. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el27.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  53. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el28.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  54. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el29.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  55. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el30.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  56. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el39.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  57. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el40.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  58. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el41.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  59. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el42.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  60. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el43.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  61. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el44.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  62. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el45.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  63. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el46.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  64. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el47.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  65. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el48.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  66. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el57.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  67. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el58.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  68. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el59.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  69. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el60.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  70. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el61.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  71. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el62.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  72. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el63.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  73. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el64.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  74. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el65.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  75. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el66.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  76. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el67.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  77. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el68.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  78. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el69.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  79. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el70.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  80. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el71.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  81. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el72.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  82. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el73.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  83. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el74.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  84. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el75.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  85. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el76.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  86. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el77.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  87. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el78.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  88. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el79.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  89. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el80.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  90. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el89.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  91. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el90.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  92. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el91.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  93. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el92.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  94. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el93.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  95. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el94.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  96. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el95.htm#konf (Memento vom 13. November 2004 im Internet Archive)
  97. http://www.lev.shuttle.de/lev/whs/ELEMENTE/el96.htm#konf (Memento vom 13. November 2004 im Internet Archive)

Diese Artikel könnten dir auch gefallen



Die letzten News


11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.