Thermochemie

Thermochemie

Thermochemie ist die Lehre von Energie und Wärme, die bei chemischen Reaktionen umgesetzt wird. Während einer Reaktion, oder einer Phasenumwandlung kann Energie freigesetzt oder aufgenommen werden. Die Thermochemie legt dabei den Fokus auf die Quantifizierung des Energieaustausches, meist auf den Austausch zwischen System und Umgebung. Man bedient sich der Thermochemie, um Edukt- und Produktmengen einer Reaktion vorherzusagen. In Kombination mit Entropiebestimmung kann sie auch genutzt werden, um vorherzusagen ob eine Reaktion spontan abläuft oder nicht.

Endotherme Reaktionen nehmen dabei Wärme aus der Umgebung auf, während exotherme Reaktionen Wärme freisetzen. Die Thermochemie verbindet dabei die Konzepte der Thermodynamik mit dem Konzept von Energie in Form von chemischen Bindungen. Das Thema beinhaltet üblicherweise Berechnungen von Größen wie Wärmekapazität, Reaktionsenthalpie, Entropie, freier Enthalpie und Energie.

Geschichte

Das erste Eis-Kalorimeter der Welt, im Winter 1782-83 von Antoine Lavoisier und Pierre-Simon Laplace benutzt, um die Enthalpien verschiedener chemischer Vorgänge zu bestimmen.

Die Thermochemie basiert auf zwei Modellannahmen. In einer modernen Formulierung kann man diese wie folgt ausdrücken:[1]

  1. Das Postulat von Lavoisier und Laplace (1780): Die bei einer beliebigen Umwandlung umgesetzte Energiemenge ist gleich der negativen Energiemenge bei der entgegengesetzt ablaufenden Umwandlung.[2]
  2. Der Satz von Hess (1840): Die Enthalpieänderung einer Reaktion hängt nur von dem Anfangs- und Endzustand ab, nicht von dem Weg auf dem diese Erreicht wurden.

Diese Annahmen waren die Vorläufer des ersten Hauptsatzes der Thermodynamik (1845) und ermöglichten seine Formulierung.

Lavoisier, Laplace und Hess waren ebenfalls an der Definition der spezifischen Wärmekapazität und der latenten Wärme beteiligt, auch wenn schließlich Joseph Black die abschließenden Beiträge zu der Entwicklung des Konzepts des latenten Wärmetransports geleistet hat.

Gustav Kirchhoff zeigte 1858, dass die Änderung der Reaktionsenthalpie durch die Änderung der Wärmekapazität von Reaktanten zu Produkten gegeben ist:

$ \frac {\mathrm{d}H} {\mathrm{d}T} = C_\mathrm{p} $.

Die Integration dieser Gleichung erlaubt die Evaluierung der Reaktionsenthalpie bei einer Temperatur aus den Messergebnissen bei einer anderen Temperatur.[3]

Kalorimetrie

Die Bestimmung von Enthalpieänderungen wird mittels der Kalorimetrie durchgeführt, üblicherweise in einem geschlossenen Behältnis in welchem der zu beobachtende Prozess abläuft. Die Temperatur des Behältnisses wird entweder durch ein Thermometer, oder ein Thermoelement überwacht und grafisch gegen die Zeit aufgetragen. Moderne Kalorimeter sind in der Regel mit Digitalsensoren und Software versehen, um Ergebnisse schnell zur Auswertung bereitzustellen. Ein Beispiel dafür ist die Dynamische Differenzkalorimetrie (engl. differencial scanning calorimetry, kurz DSC).

Systeme

Verschiedene thermodynamische Definitionen können in der Thermochemie sehr hilfreich sein. Ein System ist definiert als exakt der Teil des Universums, der analysiert werden soll. Alles außerhalb des Systems ist als Umgebung definiert. Beispiele für ein System sind:

  • ein (vollständig) isoliertes System, welches weder Energie noch Materie mit der Umgebung austauschen kann, in erster Näherung also ein Bombenkalorimeter
  • ein thermisch isoliertes System, das weder Wärme noch Materie, dafür aber mechanische Arbeit austauschen kann, zum Beispiel ein Kolben oder ein Ballon
  • ein mechanisch isoliertes System, das weder mechanische Arbeit noch Materie, dafür aber Wärme austauschen kann, zum Beispiel ein offenes Bombenkalorimeter
  • ein offenes System, welches sowohl Materie als auch Energie frei mit der Umgebung austauschen kann, zum Beispiel ein Topf kochendes Wasser

Prozesse

Ein System unterliegt einem Prozess wenn sich eine oder mehrere seiner thermodynamischen Eigenschaften ändern. Ein Prozess bezieht sich immer auf die Veränderung eines Zustandes. Ein isothermer Prozess tritt auf, wenn die Temperatur des Systems gleich bleibt. Ein isobarer Prozess tritt auf, wenn der Druck des Systems konstant bleibt. Von einem adiabatischen Prozess spricht man, wenn kein Wärmeaustausch mit der Umgebung stattfindet.

Einzelnachweise

  1. Pierre Perrot: A to Z of thermodynamics. Oxford University Press, Oxford; New York 1998, ISBN 0-19-856556-9.
  2. Frederick Hutton Getman: Outlines of Theoretical Chemistry. John Wiley & sons, New York 1918, S. 290 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. Peter W. Atkins, Julio De Paula: Physikalische Chemie. 5. Auflage. Wiley-VCH, Weinheim 2013, ISBN 978-3-527-33247-2, S. 75.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.