TRISTAN

TRISTAN

Dieser Artikel behandelt einen ehemaligen Teilchenbeschleuniger in Japan. Weitere Bedeutungen sind unter Tristan aufgeführt.
Der ehemalige Teilchenbeschleuniger TRISTAN (Electron-Positron-Collider) am Forschungszentrum für Hochenergiephysik KEK in Tsukuba (Japan), bestehend aus den drei Vorbeschleunigern und dem Hauptring (Main Ring).

TRISTAN (Transposable Ring Intersecting STorage Accelerator in Nippon) war ein Teilchenbeschleuniger am japanischen Forschungszentrum für Hochenergiephysik KEK in Tsukuba. Der Speicherring mit drei Kilometern Umfang, für die gleichzeitige Beschleunigung von Elektronen und Positronen und deren Kollision mit Schwerpunktsenergien von bis zu 64 GeV, wurde von 1986 bis 1995 betrieben und ab 1994 zum KEKB-Teilchenbeschleuniger umgebaut. Für diesen wurden in den vorhandenen Tunnel und im Gegensatz zu TRISTAN zwei getrennte Speicherringe für die Elektronen und Positronen errichtet, für Maximalenergien von 8 beziehungsweise 3,5 GeV (asymmetrische B-Fabrik).[1][2]

Geschichte

Nach der ersten Postulierung des Aufbaus von Hadronen aus den Quarks genannten Elementarteilchen Mitte der 1960er Jahre, konnten fünf Quarks bis 1977 experimentell bestätigt werden. Um die von den japanischen Wissenschaftlern Makoto Kobayashi und Toshihide Maskawa 1973 aufgestellte Theorie zur Erklärung der CP-Verletzung mittels einer dritten Generation von Quarks (Bottom- und Top-Quark) zu bestätigen, wurden Ende der 1970er Jahre am KEK Pläne zum Bau eines Teilchenbeschleunigers zur Suche nach dem verbliebenen Top-Quark (das Bottom-Quark wurde 1977 am Fermilab nachgewiesen[3]) wieder aufgegriffen. Es wurde sich schließlich für den Bau eines Electron-Positron-Collider mit Schwerpunktsenergien von 60 GeV entschieden. Der Bau begann 1981 und im November 1986 konnte der TRISTAN genannte Beschleunigerkomplex in Betrieb genommen werden. Durch Umbauten und Erweiterungen konnte die Schwerpunktsenergie von anfänglich 50 GeV auf 64 GeV gesteigert sowie die Luminosität erhöht werden. Ende der 1980er zeichnete sich aber schon ab, dass die Energie zur Erzeugung des Top-Quark nicht ausreichen würde, und Planungen für das Nachfolgeprojekt KEKB wurden aufgenommen. Der Umbau wurde 1994 begonnen und der Betrieb von TRISTAN 1995 eingestellt.[1][4]

Das Top-Quark konnte 1995 mit dem CDF des Fermilabs nachgewiesen werden.[5]

Aufbau und Betrieb

Der Beschleunigerkomplex bestand aus dem Hauptring (Main Ring, MR) und drei Vorbeschleunigern. Zur Produktion der Positronen wurden mit einem ersten Linearbeschleuniger (LINAC) auf 200 MeV beschleunigte Elektronen auf ein aus Tantal bestehendes Target gelenkt. Die erzeugten Positronen wurden mit einem weiteren LINAC auf 250 MeV beschleunigt und in den Hauptlinearbeschleuniger geleitet. Mit diesem wurden Elektronen und Positronen auf 2,5 GeV beschleunigt und in den ersten Speicherring (Accumulation Ring, AR) eingespeist. Die gesamte Linearbeschleunigereinheit hatte eine Länge von circa 400 Metern und wurde für den KEKB-Beschleuniger zur Erzeugung von höheren Energien aufgerüstet bzw. erweitert.[1]

Der TRISTAN-AR war ursprünglich ein Speicherring mit 377 m Umfang, in dem beide Teilchenarten akkumuliert, auf Teilchenenergien von 8 GeV beschleunigt und dann in den TRISTAN-Hauptring eingespeist wurden. Er wurde später zum Photon Factory Advanced Ring (PF-AR) des KEK umgerüstet, zur gezielten Erzeugung von Synchrotronstrahlung im Bereich hochenergetischer Röntgenstrahlung. Der TRISTAN-Hauptring besaß wie die beiden getrennten Speicherringe des Nachfolgers KEKB[2] einen Umfang von circa 3 km und bestand aus vier Bogensegmenten mit einem mittleren Radius von 346,7 m und vier geraden Segmenten von 194,4 m.[6] In der Mitte der geraden Teilabschnitte befanden sich die Kollisionszonen in den Experimentierhallen Fuji, Nikko, Tsukuba und Oho; mit den Experimenten VENUS, SHIP, TOPAZ und AMY. Die Teilchen wurden in Paketen (Bunches) auf bis zu 32 GeV beschleunigt und anschließend zur Kollision gebracht. Die Elektronen liefen dabei im Uhrzeigersinn und die Positronen entgegengesetzt um. Wie im TRISTAN-AR wurden die Teilchenpakete während der Befüllung und Beschleunigung mittels zuschaltbarer elektrostatischer Separatoren[7][8] an den Kollisionspunkten getrennt.[1]

Literatur

  • Yoshitaka Kimura: FROM TRISTAN TO B–FACTORY. (PDF; 1,6 MB) In: IPAC'10 – Special Lectures to Commemorate the 120th Anniversary of Birth of Yoshio Nishina. Kyoto, Japan, 23. Mai 2010.
  • Yoshitaka Kimura: The Performance of TRISTAN and Accelerator Development at KEK. (PDF; 676 kB) In: Proc. of the 2nd European Particle Accelerator Conference. Nizza, Frankreich, 12.–16. Juni 1990, S. 23–27.
  • Sharon Traweek: Big Science and Colonialist Discourse: Building High-Energy Physics in Japan. In: Bruce Hevly (Hrsg.): Big Science: The Growth of Large-Scale Research. Stanford University Press, Stanford 1992, ISBN 0-8047-1879-2, S. 100–128.

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 Yoshitaka Kimura: The Performance of TRISTAN and Accelerator Development at KEK. (PDF; 676 kB) In: Proc. of the 2nd European Particle Accelerator Conference. Nizza, Frankreich, 12.–16. Juni 1990, S. 23–27.
  2. 2,0 2,1 S. Kurokawa: Status of TRISTAN-II project. (PDF; 331 kB) In: Proc. of the 1993 Particle Accelerator Conference. Washington, DC, USA, 17.–20. Mai 1993, doi:10.1109/PAC.1993.309203.
  3. Discovery of the bottom quark, Upsilon. Fermilab History and Archives Project, abgerufen am 25. August 2013.
  4. Yoshitaka Kimura: FROM TRISTAN TO B–FACTORY. (PDF; 1,6 MB) In: IPAC'10 – Special Lectures to Commemorate the 120th Anniversary of Birth of Yoshio Nishina. Kyoto, Japan, 23. Mai 2010.
  5. CDF Collaboration (F. Abe et al.): Observation of top quark production in anti-p p collisions. In: Phys. Ref. Lett. Band 74, 1995, S. 2626–2631, doi:10.1103/PhysRevLett.74.2626, arxiv:hep-ex/9503002.
  6. G. Horikoshi, Y. Kimura: Status of TRISTAN. (PDF; 593 kB) In: Proc. of the 12th IEEE Particle Accelerator Conference. Washington, DC, USA, 16.–19. März 1987, S. 34–38.
  7. E. Kikutani et al.: Measurement of Luminosity in TRISTAN Accumulation Ring. (PDF; 439 kB) In: Particle Accelerators. Vol. 31, 1990, S. 171–176.
  8. T. Shintake et al.: Electrostatic beam separation system of TRISTAN main ring. (PDF; 339 kB) In: Proc. of the 13th IEEE Particle Accelerator Conference. Chicago, USA, 20.–23. März 1989, S. 1480–1482.

Diese Artikel könnten dir auch gefallen



Die letzten News


27.07.2021
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
26.07.2021
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
26.07.2021
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
26.07.2021
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
26.07.2021
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
26.07.2021
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
26.07.2021
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
26.07.2021
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
26.07.2021
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht. Solche Wigner-​Kristalle wurden bereits vor fast neunzig Jahren vorhergesagt, konnten aber erst jetzt direkt in einem Halbleitermaterial beobachtet werden.
26.07.2021
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.
26.07.2021
Synthese unter Laserlicht
Eine Forschungsgruppe hat neue Methode zur Bildung von protoniertem Wasserstoff entdeckt. Mit starken Laserpulsen erzeugen Physiker des attoworld-Teams am Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München erstmals protonierten Wasserstoff an Nanooberflächen.
26.07.2021
Materiestraße im All lässt Galaxienhaufen wachsen
Vor einem halben Jahr meldeten Astronomen der Universität Bonn die Entdeckung eines extrem langen intergalaktischen Gasfadens mit dem Röntgenteleskop eROSITA.
26.07.2021
Kosmischer Treffpunkt für Galaxienhaufen
Was treibt Galaxien an, oder führt zu ganzen Ansammlungen von Galaxien – sogenannte Galaxienhaufen? Obwohl kosmologische Modelle und Simulationen diese Strukturen und die Rolle, die sie spielen könnten, vorausgesagt haben, ist die Bestätigung ihrer Existenz durch die Beobachtung mit dem Röntgen-Weltraumteleskop eROSITA ziemlich neu.
28.06.2021
Quantensimulation: Messung von Verschränkung vereinfacht
Forscher haben ein Verfahren entwickelt, mit dem bisher kaum zugängliche Größen in Quantensystemen messbar gemacht werden können.
28.06.2021
Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik? Ein Forschungsteam analysierte wichtige Messungen neu. Sie fanden heraus: Ein angeblich sensationeller Effekt existiert gar nicht.
28.06.2021
Paradoxe Wellen: Gefangene Lichtteilchen auf dem Sprung
Physikern ist es gelungen, ein neuartiges Verhalten von Lichtwellen zu beobachten, bei welchem Licht durch eine neue Art von Unordnung auf kleinste Raumbereiche begrenzt wird.
28.06.2021
Isolatoren bringen Quantenbits zum Schwitzen
Schwachleitende oder nichtleitende Materialien haben Innsbrucker Physiker als wichtige Quelle für Störungen in Ionenfallen-Quantencomputern identifiziert.
23.06.2021
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
17.06.2021
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
17.06.2021
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
17.06.2021
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
17.06.2021
Entdeckung der größten Rotationsbewegung im Universum
D
13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.