Symplektische Mannigfaltigkeit

Symplektische Mannigfaltigkeit

Symplektische Mannigfaltigkeiten sind die zentralen Objekte der symplektischen Geometrie, eines Teilgebiets der Differentialgeometrie. Die symplektischen Mannigfaltigkeiten haben einen sehr starken Bezug zur theoretischen Physik.

Definition

Eine symplektische Mannigfaltigkeit ist eine glatte Mannigfaltigkeit $ M $ zusammen mit einer symplektischen Form $ \omega $, das heißt einer globalen, glatten und geschlossenen 2-Form, die punktweise nicht ausgeartet ist (siehe auch symplektischer Raum). „Geschlossen“ bedeutet, dass die äußere Ableitung der Differentialform verschwindet, $ \mathrm d \omega = 0 $.[1]

Symplektische Mannigfaltigkeiten haben immer eine geradzahlige Dimension, da antisymmetrische Matrizen in ungeraden Dimensionen nicht invertierbar sind und deshalb antisymmetrische Bilinearformen in ungerader Dimension ausgeartet sind.

Poisson-Klammer

Hauptartikel: Poisson-Klammer

Da die Form $ \textstyle \omega=\sum_{ij}\omega_{ij}\,\mathrm dx^i\wedge\mathrm d x^j $ nicht ausgeartet ist, definiert sie mit ihrem Inversen an jedem Punkt eine bilineare Abbildung von Eins-Formen $ \textstyle \eta=\sum_i\eta_i\, \mathrm d x^i $ und $ \textstyle \chi=\sum_j\chi_j\, \mathrm d x^j $

$ \Omega(\eta,\chi) =\sum_{ij} \omega^{ij}\,\eta_i\, \chi_j\,,\quad \sum_j \omega^{ij}\omega_{jk}=\delta^i{}_k $

und die Poisson-Klammer der Funktionen $ f $ und $ g $,

$ \{f, g\}=\Omega(\mathrm d f, \mathrm d g) = \sum_{ij}\omega^{ij}\,\partial_i f\, \partial_j g\,. $

Lagrangesche Untermannigfaltigkeit

Eine Lagrangesche Untermannigfaltigkeit einer 2n-dimensionalen symplektischen Mannigfaltigkeit $ (M,\omega) $ ist eine n-dimensionale Untermannigfaltigkeit $ L\subset M $ mit

$ \omega\mid_{TL}=0 $,

d.h. die Einschränkung der symplektischen Form auf den Tangentialraum von L verschwindet. (Untermannigfaltigkeiten beliebiger Dimension, die die letztere Bedingung erfüllen, heißen isotrop. Man kann zeigen, dass isotrope Mannigfaltigkeiten höchstens n-dimensional sind. Lagrange-Mannigfaltigkeiten sind also isotrope Untermannigfaltigkeiten maximaler Dimension.)

Die lagrangesche Mannigfaltigkeit spielt eine wichtige Rolle in der Physik. Eine Lagrangesche Mannigfaltigkeit mit reellem Keim lässt sich wie folgt definieren: Man betrachte eine Lagrangesche Mannigfaltigkeit $ \Lambda^k $ mit Dimension k<n eingebettet in einen 2n dimensionalen reellen Phasenraum. Zu jedem Punkt $ \sigma $ auf $ \Lambda^k $ lässt sich eine (n-k) dimensionale Hyperebene $ \lambda^{n-k}(\sigma) $ im Phasenraum finden (vgl. Konzept Cotangentialraum in der Differentialgeometrie), man nennt sie Keim am Punkt $ \sigma $. Weiter wird der Tangentialraum an $ \sigma $ mit $ T\Lambda^k(\sigma) $ bezeichnet. Man nennt ein Paar $ (\Lambda^k,\lambda^{n-k}) $ nun eine lagrangesche Mannigfaltigkeit mit reellem Keim, wenn: (i) $ r^n(\sigma):=\lambda^{n-k}(\sigma)+T\Lambda^k(\sigma) $ die Dimension n hat. (ii) das symplektische Produkt zweier Vektoren $ v_1,v_2\in r^n(\sigma) $ verschwindet d.h. $ \omega(v_1,v_2)=0 $ [2]

Hamilton’scher Fluss

In einem Euklidischen Raum ist der Gradient einer Funktion $ f $ dasjenige Vektorfeld $ g_f $, dessen Skalarprodukt $ \langle g_f,w\rangle $ für jedes gegebene Vektorfeld $ w $ mit der Anwendung von $ \mathrm d f $ auf $ w $ übereinstimmt,

$ \langle g_f,w\rangle =\mathrm d f[w] = w[f]\,. $

In einer Symplektischen Mannigfaltigkeit gehört zu gegebenem f und einer gegebenen beliebigen Funktion $ h $ das Vektorfeld

$ v_h:f\mapsto \{f,h\}\,, $

das Funktionen $ f $ längs einer Integralkurve der zu $ h $ (interpretiert als sog. Hamiltonfunktion des Systems) gehörigen hamiltonschen Gleichungen ableitet. Die Rolle von w wird hier also durch h übernommen, und es wird für h die Symplektische Geometrie bzw. die Hamilton’sche Dynamik benutzt.

Das Vektorfeld $ \,v_h $ ist also der Symplektische Gradient von $ h $ oder der infinitesimale Hamilton’sche Fluss von $ h $.

Satz von Darboux

Der Satz von Darboux benannt nach dem Mathematiker Jean Gaston Darboux besagt:[3]

In der Umgebung jedes Punktes einer symplektischen Mannigfaltigkeit gibt es lokale Koordinatenpaare $ (q_i, p_i) $ mit

$ \omega = \sum_{i} \mathrm d q_i \and \mathrm d p_i\,. $

Die so definierten Koordinatenpaare werden als kanonisch konjugiert bezeichnet.

Das Darboux-Theorem hat vielfache Anwendungsmöglichkeiten: Zum Beispiel lässt sich damit zeigen, dass es für zwei aufeinander liegende Pfannkuchen stets einen Schnitt gibt, mit dem sich beide Pfannkuchen in zwei gleiche Hälften teilen lassen.

Beziehung zur Hamiltonschen Mechanik

In der Hamiltonschen Mechanik ist der Phasenraum eine symplektische Mannigfaltigkeit mit der geschlossenen, symplektischen Form

$ \omega = \sum_{i} \mathrm d q_i \and \mathrm d p_i\,,\quad \mathrm d \omega = 0\,. $

Dies ist kein Spezialfall, denn nach dem Satz von Darboux lässt sich $ \omega $ in lokalen Koordinaten immer als $ \textstyle \sum_{i} \mathrm d q_i \and \mathrm d p_i\ $ schreiben. Bei symplektischen Mannigfaltigkeiten handelt es sich um die Phasenräume der Hamiltonschen Mechanik.

Die mathematische Aussage bezüglich $ \omega $ ist äquivalent zu den sogenannten kanonischen Gleichungen der theoretischen Physik, speziell in der analytischen Mechanik.

In diesem Zusammenhang ist auch das Liouville-Theorem von Bedeutung, das in der statistischen Physik eine Rolle spielt. Es besagt im Wesentlichen, dass bei Hamilton'schen Flüssen das Phasenraumvolumen konstant bleibt, was für die Bestimmung der Wahrscheinlichkeitsmaße dieser Theorie wichtig ist.

Siehe auch

Literatur

  • V. I. Arnold: Mathematical Methods of Classical Mechanics (= Graduate Texts in Mathematics 60). 2. Auflage, Springer, New York NY u. a. 1989, ISBN 0-387-96890-3.
  • Rolf Berndt: Einführung in die Symplektische Geometrie. Vieweg, Braunschweig u. a. 1998, ISBN 3-528-03102-6.

Weblinks

Einzelnachweise

  1. Definition symplektischer Mannigfaltigkeiten nach Vladimir I. Arnold Mathematical Methods of Classical Mechanics. 2. Auflage, Springer, 1989, ISBN 0-387-96890-3, S. 201 (Kapitel 8 – Symplectic Manifolds). Ebenso in Ana Cannas da Silva: Lectures on Symplectic Geometry. Springer, Berlin 2001, ISBN 3-540-42195-5. Manchmal wird auch auf die Forderung der Geschlossenheit verzichtet und nur die Existenz einer symplektischen Struktur gefordert.
  2. Definition findet man im Buch von V. Maslov: The complex WKB method for non-linear equations 1. Kapitel 2.
  3. Ein Beweis findet sich in V. I. Arnold: Mathematical Methods of Classical Mechanics. 2. Auflage. Springer, 1989, ISBN 0-387-96890-3, Kapitel 8.

Diese Artikel könnten dir auch gefallen



Die letzten News


13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.
13.06.2021
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
13.06.2021
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.