Spannungsoptik

Spannungsoptik

Spannungsoptik
Spannungsoptik an einem Winkelmesser aus Polystyrol, hervorgerufen durch Texturen bei der Formgebung.

Als Spannungsoptik wird ein Teilgebiet der Optik beziehungsweise der Konstruktionslehre bezeichnet, in dem durch die Verwendung von polarisiertem Licht die Spannungsverteilung in lichtdurchlässigen Körpern untersucht wird. An transparenten, zweidimensionalen Werkstückmodellen werden bei mechanischer Belastung Stellen besonders hoher Beanspruchung sichtbar. Grundlage bildet die Eigenschaft vieler optisch isotroper Materialien, bei mechanischen Spannungen doppelbrechend zu werden. Dadurch wird die Polarisationsebene einfallenden Lichts gedreht beziehungsweise es entsteht elliptisch oder zirkular polarisiertes Licht.[1] Das kann mit einem Polarimeter sichtbar gemacht werden.

Durch Verwendung von monochromatischem Licht entsteht ein System aus dunklen und hellen Streifen, deren Anordnung zuverlässige Rückschlüsse auf Verteilung und Größe der mechanischen Spannung an allen Stellen des Körpers erlaubt.

Im Bild rechts entstehen an einem durch Kräfte belasteten Prüfkörper zwei Arten von dunklen Streifen: die Isochromaten sind Linien mit konstanter Hauptspannungs-Differenz, an den Isoklinen fällt die Richtung einer Hauptspannung mit der Polarisationsrichtung des einfallenden Lichts zusammen, sie repräsentieren somit die Spannungstrajektorien des Körpers unter der gegebenen Belastung.

Zur Unterscheidung zwischen Isochromaten und Isoklinen kann die belastete Probe (oder die Polarisationsrichtung des Lichts) gedreht werden – im spannungsoptischen Bild verändern sich dadurch die Isoklinen, nicht aber die Isochromaten. Eine andere Möglichkeit ist die Verwendung von zirkular-polarisiertem Licht – in diesem Fall sind keine Isoklinen sichtbar (untere zwei Bilder).

Wird weißes Licht verwendet, entstehen für jede Farbe unterschiedliche Hell-Dunkel-Muster - dies ergibt die Farbmuster, wie sie links im Bild gezeigt sind. Einzig bei der 0ten Ordnung der Streifen fallen alle Farben zusammen. Dies ergibt schwarze Streifen an den unbelasteten Stellen in der Probe (untere Ecke des Winkels).

Bei der quantitativen Auswertung geht man von einem ebenen Spannungszustand aus. Die beiden Hauptspannungen in der Probenebene beeinflussen den Brechungsindex des Materials, die dritte Hauptspannung in Dickenrichtung hat keine Wirkung.

Dieses Verfahren wird noch vereinzelt in der Werkstoffprüfung angewandt, indem durchsichtige Kunstharzmodelle (mit optischer Aktivität) auf Belastungen, die in der praktischen Anwendung auftreten können, untersucht werden. Die Spannungsverteilung im Modell stimmt mit derjenigen im realen Bauteil überein, auch wenn die Deformation sich unterscheidet.

Durch die verbesserten Rechenverfahren mit der Finite-Elemente-Methode werden diese Untersuchungen heute vorwiegend am Computer durchgeführt.

Weblinks

  • Video: Spannungsoptik. Institut für den Wissenschaftlichen Film (IWF) 1949, zur Verfügung gestellt von der Technischen Informationsbibliothek (TIB), doi:10.3203/IWF/C-558.

Einzelnachweise

  1. Andreas Reichert, Henning Katte: Grundlagen der Spannungsoptik. ilis GmbH, Erlangen 2005 (PDF-Datei; 262 kB).

Diese Artikel könnten dir auch gefallen



Die letzten News


25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.
02.02.2021
Entwicklung einer rekordverdächtigen Quelle für Einzelphotonen
Forschende der Universität Basel und der Ruhr-Universität Bochum haben eine Quelle für einzelne Photonen entwickelt, die Milliarden dieser Quantenteilchen pro Sekunde produzieren kann.
02.02.2021
Mit Künstlicher Intelligenz warme dichte Materie verstehen
Die Erforschung warmer dichter Materie liefert Einblicke in das Innere von Riesenplaneten, braunen Zwergen und Neutronensternen.
01.02.2021
Durch die fünfte Dimension zur Dunklen Materie
Eine Entdeckung in der theoretischen Physik könnte helfen, das Rätsel der Dunklen Materie zu lösen.
28.01.2021
KI für die Raumfahrt
Ob der eigenwillige HAL 9000 bei Odyssee im Weltraum, der dezent agierende „Computer“ der Enterprise oder die nüchtern-sarkastischen TARS und CASE in Interstellar – in der Science-Fiction wird die Exploration des Weltraums seit jeher von Künstlicher Intelligenz begleitet.