Satz von Liouville (Physik)

Satz von Liouville (Physik)

Der Satz von Liouville (auch Liouville-Theorem genannt, nach Joseph Liouville) ist eine direkte Folge aus der Liouville-Gleichung und besagt, dass das von benachbarten Trajektorien im Phasenraum eingeschlossene (mehrdimensionale) Volumen konstant ist.

Der Satz gilt für konservative Systeme, die im Hamilton-Formalismus beschrieben werden können und aus unabhängigen Teilchen mit gleicher Hamilton-Funktion bestehen. Er gilt deshalb beispielsweise nicht für Isotopen-Gemische, aber für jedes Isotop separat.

Folgerungen

Das bedeutet, dass für frei fliegende gleiche Teilchen (auch für Lichtteilchen, also Photonen gleicher Wellenlänge) die Dichte im Ortsraum nur erhöht werden kann, wenn gleichzeitig die Dichte im Impulsraum verringert wird, wenn also die Geschwindigkeiten (nach Richtung oder Betrag) in einem größeren Bereich liegen.

Mit „Ortsraum“ ist dabei unser „gewöhnlicher“ dreidimensionaler Raum gemeint; Impulsraum ist ein mathematischer Raum, dessen Koordinaten die Vektorkomponenten des Impulses sind.

Wenn ein Strahl annähernd parallel fliegender Teilchen (kleine Impulsunschärfe quer zur Bewegungsrichtung) auf einen kleineren Durchmesser fokussiert wird, wird die Dichte im Ortsraum erhöht. Es muss daher die Dichte im Impulsraum verringert werden, die Teilchen müssen also stärker unterschiedliche Impulse (Geschwindigkeiten quer zur Strahlrichtung) erhalten. Daher können die Teilchenbahnen nicht mehr so genau parallel bleiben.

Der Satz von Liouville begrenzt, wie stark ein Teilchen- oder Lichtstrahl fokussiert werden kann, ohne Teilchen (bzw. Licht) zu verlieren. Beispielsweise kann ein Laserstrahl mit 1 mm2 Strahlquerschnitt, in dem alle Photonen nahezu denselben Impuls quer zur Strahlrichtung haben (also „parallel fliegen“), auf einen viel kleineren Durchmesser fokussiert werden als das Licht einer kleinen Glühlampe, deren Glühfaden eine Fläche von etwa 1 mm2 hat. Grund dafür ist, dass das Licht der Glühbirne in alle Richtungen abgestrahlt wird, also der Impuls der Photonen sehr unterschiedlich ist (großes Volumen im Impulsraum, das nicht mehr vergrößert werden kann).

Anmerkung: Ein so einfacher Zusammenhang zwischen Impuls und Geschwindigkeit, wie hier angenommen wurde, ist nur gültig, wenn keine Magnetfelder zu berücksichtigen sind.

Eine weitere Folgerung aus dem Satz von Liouville ist die Kontinuitätsgleichung der Hydrodynamik.

Mathematische Betrachtung

Betrachte einen Phasenraumvektor $ \vec{x}=(\vec{q}, \vec{p}) $, der sowohl kanonische Koordinaten $ q $ als auch kanonische Impulse $ p $ beinhaltet. Unter Verwendung der Hamiltonschen Bewegungsgleichungen lautet die zeitliche Ableitung dieses Vektors:

$ \dot{\vec{x}} = \left(\dot{\vec{q}},\dot{\vec{p}}\right)=\left(\frac{\partial H}{\partial\vec{p}} \, , -\frac{\partial H}{\partial\vec{q}}\right) $

mit der Hamilton-Funktion $ H $.

Wenden wir die Divergenz $ \operatorname{div}:=\left(\frac{\partial}{\partial\vec{q}}\,,\frac{\partial}{\partial\vec{p}}\right) $ auf $ \dot{\vec{x}} $ an, so erhält man

$ \operatorname{div}\dot{\vec{x}}=\frac{\partial^{2}H}{\partial\vec{q}\,\partial\vec{p}}-\frac{\partial^{2}H}{\partial\vec{p}\,\partial\vec{q}}=0 $

Das Geschwindigkeitsfeld $ \dot{\vec{x}} $ ist also quellenfrei.

Mit obigen Größen kann die Liouville-Gleichung als Kontinuitätsgleichung geschrieben werden:

$ \begin{align} \frac{\partial}{\partial t}\rho & = -\{\rho,H\}\\ & = -\left(\frac{\partial\rho}{\partial\vec{q}} \, \dot{\vec{q}}+\frac{\partial\rho}{\partial\vec{p}} \,\, \dot{\vec{p}}\right)\\ & = -\operatorname{div}\!\left(\rho\dot{\vec{x}}\right) \end{align} $

Man kann sich daher die Dynamik der Wahrscheinlichkeitsdichte $ \rho $ im Phasenraum als Strömung einer inkompressiblen Flüssigkeit veranschaulichen. Aus der Kontinuitätsgleichung folgt, dass das Phasenraumintegral über $ \rho $ eine Erhaltungsgröße ist, und aus der Divergenzfreiheit folgt die Inkompressibilität. Somit muss das eingenommene Phasenraumvolumen konstant sein.

Literatur

Franz Schwabl: Statistische Mechanik. Springer 2006, ISBN 978-3-540-31095-2

Siehe auch

  • Satz von Liouville (Funktionentheorie)
  • Satz von Liouville (Differentialgeometrie)

Diese Artikel könnten dir auch gefallen



Die letzten News


03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
03.03.2021
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
03.03.2021
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.