Rohrreibungszahl

Rohrreibungszahl

Physikalische Kennzahl
Name Rohrreibungszahl
Formelzeichen $ \lambda $
Dimension dimensionslos
Definition $ \lambda = \frac{2 dp}{dx}~ \frac{D}{\rho\cdot v^2} $
$ \textstyle{\frac{dp}{dx}} $ Druckgradient im Rohr
$ D $ Rohrdurchmesser
$ v $ mittlere Geschwindigkeit
$ \rho $ Dichte
Anwendungsbereich Rohrströmungen
Datei:Rohrreibung Diagramm.png
Das Rohrreibungsdiagramm (Moody-Diagramm) stellt die Abhängigkeit der Rohrreibungszahl von der Reynoldszahl und der Rauheit k dar.

Die Rohrreibungszahl λ (Lambda) ist eine dimensionslose Kennzahl zur Berechnung des Druckabfalls bei einer Strömung in einem geraden Rohr.

Definition

Der Widerstand von Rohrströmungen könnte dabei auch als Druckverlustbeiwert ζ (Zeta) geschrieben werden, lässt sich jedoch noch weiter auflösen:

$ \zeta = \lambda \frac{L}{D} $
$ L $: Länge
$ D $: Innendurchmesser

Für die laminare, voll ausgebildete Strömung in einem kreisrunden Rohr, bestimmt sich die Rohrreibungszahl nach dem Gesetz von Hagen-Poiseuille zu:

$ \lambda = \frac{64}{Re} $
$ Re $: Reynolds-Zahl

Bei turbulenter Strömung gibt es Näherungsformeln zur Bestimmung der Rohrreibungszahl. Die Rohrreibungszahl errechnet sich in einigen Fällen iterativ. Als Startwert kann $ \lambda = 0{,}02 $ verwendet werden.[1]

Dabei sind folgende Fälle zu unterscheiden:

  • Hydraulisch glattes Rohr, das heißt, die Unebenheiten der Wand des Rohres sind zur Gänze von einer viskosen Unterschicht umhüllt. Der Wert von $ \lambda $ errechnet sich mit der Formel von Prandtl:
$ \frac{1}{\sqrt{\lambda}} = 2{,}0 \log_{10} \left( Re {\sqrt{\lambda}} \right) - 0{,}8 $ Über die Lambertsche W-Funktion lässt sich auch eine explizite Formulierung angeben:
$ \lambda = \frac{1{,}32547}{W\left (0{,}458338/\sqrt{1/Re^2} \right )} $
Eine häufig verwendete einfache Korrelation zur näherungsweisen Berechnung des Druckverlustverhaltens des glatten Rohres im Bereich $ Re<10^{5} $ ist die nach Blasius:[2]
$ \lambda = \frac{0{,}3164}{Re^{0{,}25}} $
  • Hydraulisch raues Rohr, das heißt die Unebenheiten der Wand des Rohres werden nicht mehr von einer viskosen Unterschicht umhüllt. Der Wert von $ \lambda $ errechnet sich mit der Formel von Nikuradse:
$ \frac{1}{\sqrt{\lambda}} = -2 \log_{10} \left( \frac{k}{3{,}71 d} \right) $
$ d $: Rohrdurchmesser (mm)
$ k $: absolute Rauheit (mm)
  • Übergangsbereich zwischen den vorstehend angeführten Zuständen. Hier gilt nach Colebrook:
$ \frac{1}{\sqrt{\lambda}} = -2 \log_{10} \left( \frac{2{,}51}{Re \sqrt {\lambda}} + \frac{k}{3{,}71 d} \right) $

Die Colebrook-Formel für den Übergangsbereich kann näherungsweise auch für den hydraulisch glatten Bereich ($ k \to 0 $) und den hydraulisch rauen Bereich ($ Re \to \infty $) genutzt werden.

Erläuterungen

Die Grenze zwischen Übergangs- und rauem Bereich verläuft nach Moody[3] bei

$ Re \sqrt{\lambda} \ \frac{k}{d} = 200 $.

Die nachstehende Tabelle enthält Beispiele für absolute Rauheiten.[4][5][6]

Werkstoff und Rohrart Zustand der Rohre $ k $ in mm
absolut glattes Rohr theoretisch 0
neuer Gummidruckschlauch technisch glatt ca. 0,0016
Rohre aus Kupfer, Leichtmetall, Glas technisch glatt 0,001 … 0,0015
Kunststoff neu 0,0015 … 0,007
Rohr aus Gusseisen neu 0,25 … 0,5
angerostet 1,0 … 1,5
verkrustet 1,5 … 3,0
Stahlrohre gleichmäßige Rostnarben ca. 0,15
neu, mit Walzhaut 0,02 … 0,06
leichte Verkrustung 0,15 … 0,4
starke Verkrustung 2,0 … 4,0
Betonrohre neu, Glattstrich 0,3 … 0,8
neu, rauh 2,0 … 3,0
nach mehrjährigen Betrieb mit Wasser 0,2 … 0,3
Asbest-Zementrohre neu 0,03 … 0,1
Steinzeugrohre neu, mit Muffen und Stößen 0,02 … 0,25
Tonrohre neu, gebrannt 0,6 … 0,8

Um verschiedene Rauheiten zu vergleichen, kann man die äquivalente Sandrauigkeit verwenden.

Die Verlustbeiwerte können berechnet oder aus Tabellen bzw. Diagrammen entnommen werden.

In Entsprechung der Berechnung der Verlustbeiwerte für vollgefüllte Rohre, können diese auch für teilgefüllte Rohre bzw. beliebige Gerinnequerschnitte ermittelt werden. Dabei wird in der Berechnung statt des Rohrdurchmessers $ d $ der hydraulische Durchmesser verwendet:

$ d_{h} = \frac{4\cdot A}{U} $
$ d_{h} $: hydraulischer Durchmesser
$ A $: Querschnittsfläche
$ U $: Benetzter Umfang

Die Anwendung der Rohrreibungszahl hat sich für die Berechnung des Abflusses in offenen Gerinnen bisher nicht durchgesetzt, und findet nur zur Berechnung des Abflusses in Rohren Anwendung. Zur Berechnung des Abflusses in offenen Gerinnen wird zumeist auf die empirisch gewonnene Fließformel nach Strickler[7] (im englischen Sprachraum nach Manning),[8] zurückgegriffen.

Siehe auch

  • Bernoulli-Gleichung

Quellen

  1. Wolfgang Kalide: Einführung in die technische Strömungslehre. 7., durchgesehene Auflage. Hanser, München/Wien 1990, ISBN 3-446-15892-8, S. 58.
  2. Heinrich Blasius (1883–1970), dglr.de (PDF)
  3. Lewis F. Moody, Professor für Hydraulic Engineering, Princeton University: “Friction Factors for Pipe Flow” Trans. ASME, vol. 66, 1944.
  4. Wolfgang Kalide: Einführung in die technische Strömungslehre. 7., durchgesehene Auflage. Hanser, München/Wien 1990, ISBN 3-446-15892-8, S. 237.
  5. Walter Wagner: Strömung und Druckverlust: mit Beispielsammlung. 5., überarb. Auflage. Vogel, Würzburg 2001, ISBN 3-8023-1879-X, S. 79.
  6. Buderus Heiztechnik (Hrsg.): Handbuch für Heizungstechnik. Arbeitshilfe für die tägliche Praxis. 34. Auflage. Beuth, Berlin/Wien/Zürich 2002, ISBN 3-410-15283-0, S. 696.
  7. Sektionschef des Eidgenössischen Amtes für Wasserwirtschaft, Albert Strickler (1887 - 1963) Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahl für Ströme, Kanäle und geschlossene Leitungen. Mitteilungen des Eidg. Amtes für Wasserwirtschaft, Bern, 1923.
  8. antiquiert auch Philipe Gaspard Gauckler (1826–1905) bezeichnet

Diese Artikel könnten dir auch gefallen



Die letzten News


06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
03.03.2021
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
03.03.2021
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.