Riesenstern

Riesenstern

Ein Riesenstern (oder einfach nur Riese) ist ein Stern mit extrem großem Durchmesser und extrem großer Leuchtkraft. Er ist das zweite Stadium der Sternentwicklung von sonnenähnlichen Sternen, in das er nach einem langlebigen Gleichgewichtszustand (Zwerg- oder Hauptreihenstern) eintritt. Im Hertzsprung-Russell-Diagramm (HRD) befinden sich die Riesensterne (HRD) bei gleicher Oberflächentemperatur oberhalb der Hauptreihe.[1] In der Regel haben Riesen einen Radius zwischen 10 und 100 Sonnenradien bei einer Helligkeit, die zwischen dem 10- und 1000-fachen unserer Sonne liegt.

Man unterscheidet vier Arten von Riesen.

  • Unterriesen, Sterne der Leuchtkraftklasse IV. Sie befinden sich im HRD zwischen dem Riesenast und der Hauptreihe.
  • (Normale) Riesen der Leuchtkraftklasse III. Sie bilden im HRD den Riesenast.
  • Helle Riesen, Sterne der Leuchtkraftklasse II. Sie finden sich im HRD oberhalb der normalen Riesen
  • Überriesen, Sterne der Leuchtkraftklasse I. Aufgrund ihrer noch höheren Leuchtkraft liegen sie im HRD noch über den hellen Riesen.
  • Hyperriesen, Sterne der Leuchtkraftklasse 0

In späten Spektralklassen liegt das Strahlungsmaximum von Riesen im roten Spektralbereich. Sie werden daher in diesem Stadium auch als Rote Riesen bzw. Rote Überriesen bezeichnet. Entsprechend bezeichnet man Riesen mittlerer oder früher Spektralklassen als Gelbe oder Blaue Riesen.

Interner Aufbau eines sonnenähnlichen Sterns und eines roten Riesen.

Entwicklungsszenarien

Sterne ab etwa 0,25 Sonnenmassen entwickeln sich nach Verbrauch des gesamten im Kern verfügbaren Wasserstoffs durch Fusion zu einem Riesenstern.[2] Bei diesen Sternen vollzieht sich während des Großteils ihrer Lebenszeit im Inneren eine durchgehende Konvektion, das heißt, es kommt zu einem stetigen Wärmedurchfluss innerhalb des Kerns, so dass sich das Verschmelzen des Wasserstoffs für eine Zeit von mehr als 1012 Jahren fortsetzen kann; ein Zeitraum, der viel länger ist, als das bisherige Alter des Universums. Irgendwann aber wird sich sein Zentrum zu einem Strahlungskern entwickeln, mit der Folge, dass sich der Wasserstoff im Kern erschöpft und eine Verbrennung von Wasserstoff in einer Schale um den Kern herum beginnt. (Bei Sternen mit einer Masse von mehr als 0,16 Sonnenmassen kann es hierbei zu einer Erweiterung der Hülle kommen, aber diese Expansion wird nie sehr groß werden.) Kurz danach wird das Angebot an Wasserstoff bei einem solchen Stern vollständig ausgeschöpft sein und er wird zu einem Weißen Zwerg mit einem Heliumkern zusammenfallen.[3]

Ist ein Stern massiver als 0,25 Sonnenmassen, so wird er sich zusammenziehen, sobald der gesamte Wasserstoff in seinem Kern durch die Fusion verbraucht wurde. Wasserstoff wird nun in einer Hülle um den heliumreichen Kern zu Helium verbrannt, wobei der Teil des Sterns außerhalb der Schale expandiert und sich abkühlt. Während dieser Periode seiner Entwicklung wird ein solcher Stern nun dem Unterriesen-Ast auf dem Hertzsprung-Russell-Diagramm angehören. Dieser Abschnitt beinhaltet stellare Objekte, deren Leuchtkraft etwa konstant bleibt, wobei ihre Oberflächentemperatur jedoch abnimmt. Eventuell wird ein solcher Stern auch beginnen, sich im Hertzsprung-Russell-Diagramm in den Bereich der Roten Riesen zu begeben. An diesem Punkt wird die Oberflächentemperatur des Sterns, der hier typischerweise das Stadium eines Roten Riesen erreicht hat, bei annähernd konstant bleibender Leuchtkraft seinen Radius drastisch erweitern. Der Kern wird sich weiter zusammenziehen, was nun zu einer kontinuierlichen Erhöhung seiner Temperatur führt.[4]

Von einem Stern, der sich auf der Hauptreihe befindet und dessen Masse unterhalb von etwa 0,5 Sonnenmasse bleibt, kann davon ausgegangen werden, dass er nie die notwendigen Temperaturen erreichen wird, die für die Fusion von Helium erforderlich sind.[5] Aus einem solchen Stern wird sich ein wasserstoffbrennender Roter Riese entwickeln, aus dem letztendlich ein Weißer Zwerg mit einem Heliumkern entstehen wird.[4]§ 4.1, 6.1. Andernfalls, wenn die Kerntemperatur einen Wert von etwa 108 K erreicht, wird das Helium zu verschmelzen beginnen, wobei sich durch den so genannten Drei-Alpha-Prozess im Kern Kohlenstoff und Sauerstoff bildet.[4],§ 5.9, Kapitel 6. Die Energie, die durch die Kernfusion des Heliums erzeugt wird, bewirkt, dass der Kern sich erweitert. Dadurch kommt es zu einem Effekt, bei dem sich der Druck in der Umgebung der wasserstoffbrennenden Schale verringert, wodurch sich die Energieerzeugung reduziert. Die Leuchtkraft des Sterns nimmt somit ab, seine äußere Hülle zieht sich erneut zusammen und der Stern verlässt den Ast der Roten Riesen.[6]

Seine weitere Entwicklung hängt nun von seiner Masse ab. Ist er nicht sehr massiv, wird er sich in einen horizontalen Ast auf dem Hertzsprung-Russell-Diagramm bewegen oder aber seine Position durchläuft das Diagramm in Schleifen.[4], Kapitel 6. Ist der Stern nicht schwerer als etwa 8 Sonnenmassen, wird er nach einiger Zeit das Helium im Kern aufgebraucht haben und es beginnt eine Heliumfusion in einer Hülle um seinen Kern herum. Auf Grund dessen wird dann seine Leuchtkraft wieder zunehmen und er steigt, jetzt als AGB-Stern, in den asymptotischen Riesenast des HR-Diagramms auf. Nachdem der Stern den Großteil seiner Masse verloren hat, wird sein Kern als ein aus Kohlenstoff und Sauerstoff bestehender Weißer Zwerg zurückbleiben.[4], § 7.1–7.4.

Bei denjenigen Hauptreihensternen, deren Massen groß genug sind, um schließlich eine Kohlenstofffusion zu entzünden, dies ist ab ca. 8 Sonnenmassen der Fall[4], p. 189, können verschiedene Szenarien eintreten. Diese Sterne werden ihre Helligkeit nicht wesentlich erhöhen, nachdem sie die Hauptreihe verlassen haben, aber sie werden roter erscheinen. Sie können sich jedoch ebenso zu einem Roten Überriesen oder auch zu einem Blauen Überriesen entwickeln.[7], S. 33–35;  [8] Gleichsam besteht die Möglichkeit, dass aus ihnen ein Weißer Zwerg entsteht, der einen Kern aus Sauerstoff und Neon besitzt. Denkbar ist zudem die Entstehung einer Typ-II-Supernova, die schließlich einen Neutronenstern oder sogar ein Schwarzes Loch hinterlässt.[4], § 7.4.4–7.8.

Beispiele

Bekannte Riesensterne unterschiedlicher Leuchtfarbe sind:

  • Alkione (η Tauri), ein blau-weißer (B-Typ) Riese,[9] der hellste Stern im Sternhaufen der Plejaden.[10]
  • Thuban (α Draconis), ein weißer (A-Typ) Riese im Sternbild Drache.[11]
  • σ Octantis, ein weißer (F-Typ) Riese, der das südliche Gegenstück zum Polarstern darstellt.[12]
  • Capella, ein gelb-weißer (G-Typ) Riese, der Hauptstern im Sternbild Fuhrmann.[13]
  • Pollux (β Geminorum), ein orangefarbiger (K-Typ) Riese des Sternbildes Zwillinge.[14]
  • Mira (ο Ceti), ein roter (M-Typ) Riese im Sternbild Walfisch.[15]
  • VFTS 102 bislang schnellster rotierender Stern, als Riesenstern in der Großen Magellanschen Wolke.[16][17][18]

Literatur

  • Hollis R. Johnson: Evolution of peculiar red giant stars. Cambridge University Press, Cambridge 1989, ISBN 0-521-36617-8.
  • Harm J. Habing: Asymptotic giant branch stars. Springer, New York 2004, ISBN 0-387-00880-2.

Weblinks

 <Lang> Commons: Riesensterne – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Giant Stars. Eintrag in: Patrick Moore (Hrsg.): Astronomy Encyclopedia. Oxford University Press, New York 2002, ISBN 0-19-521833-7.
  2. Giant, entry In: John Daintith, William Gould: The Facts on File Dictionary of Astronomy. 5th edition, Facts On File, New York 2006, ISBN 0-8160-5998-5.
  3. Gregory Laughlin, Peter Bodenheimer, Fred C. Adams: The End of the Main Sequence. In: The Astrophysical Journal. 10. Juni 1997, Nr. 482, S. 420–432.
  4. 4,0 4,1 4,2 4,3 4,4 4,5 4,6 Evolution of Stars and Stellar Populations, Maurizio Salaris and Santi Cassisi, Chichester, UK: John Wiley & Sons, Ltd., 2005. ISBN 0-470-09219-X., § 5.9.
  5. S. O. Kepler and P. A. Bradley: Structure and Evolution of White Dwarfs, Baltic Astronomy 4, S. 166–220. bibcode:1995BaltA...4..166K, p. 169.
  6. Giants and Post-Giants (PDF-Datei; 447 kB), class notes, Robin Ciardullo, Astronomy 534, Penn State University.
  7. Blowing Bubbles in the Cosmos: Astronomical Winds, Jets, and Explosions, T. W. Hartquist, J. E. Dyson, and D. P. Ruffle, New York: Oxford University Press, 2004. ISBN 0-19-513054-5.
  8. Supergiant, entry in The Encyclopedia of Astrobiology, Astronomy, and Spaceflight, David Darling, Zugriff 15. Mai 2007.
  9. Alcyone, entry in SIMBAD, Zugriff 16. Mai 2007.
  10. Alcyone at Jim Kaler's STARS, Zugriff 16. Mai 2007.
  11. Thuban, Eintrag beiSIMBAD, Zugriff 16. Mai 2007.
  12. Sigma Octantis, Eintrag bei SIMBAD, Zugriff 16. Mai 2007.
  13. α Aurigae Aa, Eintrag bei SIMBAD, Zugriff 16. Mai 2007.
  14. Pollux, Eintrag bei SIMBAD, Zugriff 16. Mai 2007.
  15. Mira, Eintrag bei SIMBAD, Zugriff 16. Mai 2007.
  16. http://www.uni-online.de/presse.php?id=454628
  17. eso1147 — Science Release: VLT Finds Fastest Rotating Star. 5. Dez 2011
  18. P. L. Dufton, P. R. Dunstall et al.: The VLT-FLAMES Tarantula Survey: The fastest rotating O-type star and shortest period LMC pulsar - remnants of a supernova disrupted binary? In: Astrophysical Journal Letters. (astro-ph.SR) 6. Dez. 2011 (Volltext/ PDF)

Ähnliche Artikel wie "Riesenstern" auf cosmos-indirekt.de

30.06.2020
Sterne
Das Verschwinden eines massereichen Sterns
Mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) haben Astronomen das Fehlen eines instabilen massereichen Sterns in einer Zwerggalaxie aufgedeckt.
10.12.2019

Sternenstaub von Roten Riesen
Ein Teil des Materials, aus dem die Erde entstand, war Sternenstaub von roten Riesensternen.
15.04.2019

Asteroiden verraten Größe ferner Sterne
Mit Hilfe der besonderen Eigenschaften von Gammastrahlen-Teleskopen haben Forscher die Durchmesser ferner Sterne bestimmt.
25.11.2015
Sterne
Riesenstern beim Abnehmen auf frischer Tat ertappt
Astronomen ist mit dem Very Large Telescope (VLT) der ESO die bisher detailreichste Aufnahme des Hyperriesensterns VY Canis Majoris gelungen.

Diese Artikel könnten dir auch gefallen



Die letzten News


23.01.2021
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
23.01.2021
Die Entstehung des Sonnensystems in zwei Schritten
W
23.01.2021
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
20.01.2021
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
20.01.2021
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
20.01.2021
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
Aufwändige und in diesem Umfang bis dahin noch nicht realisierte Computersimulationen zur Turbulenz in interstellaren Gas- und Molekülwolken haben wichtige neue Erkenntnisse zu der Frage gebracht, welche Rolle sie bei der Entstehung von Sternen spielt.
20.01.2021
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
25.12.2020
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.
25.12.2020
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.
25.12.2020
Skyrmionen – Grundlage für eine vollkommen neue Computerarchitektur?
Skyrmionen sind magnetische Objekte, von denen sich Forscher weltweit versprechen, mit ihnen die neuen Informationseinheiten für die Datenspeicher und Computerarchitektur der Zukunft gefunden zu haben.
25.12.2020
Mysterien in den Wolken: Große Tröpfchen begünstigen die Bildung kleinerer
Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) berichten die über ihre neuen Erkenntnisse, wie ausfallende große Regentropfen und Eispartikel das Wachstum von Aerosolen begünstigen können, um neue Kondensationskerne oder Eiskeimteilchen in Wolken zu erzeugen.
25.12.2020
Kollidierende Sterne offenbaren grundlegende Eigenschaften von Materie und Raumzeit
Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte den Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums.
25.12.2020
Endgültige Ergebnisse und Abschied vom GERDA-Experiment
Die Zeit des GERDA-Experiments zum Nachweis des neutrinolosen doppelten Betazerfalls geht zu Ende.