Pound-Rebka-Experiment

Pound-Rebka-Experiment

Im Pound-Rebka-Experiment wies Robert Pound 1960 zusammen mit seinem Assistenten Glen Rebka die gravitative Spektralverschiebung von Gamma-Strahlung im Gravitationsfeld der Erde nach. Zuvor hatten beide 1959 das Experiment vorgeschlagen[1]. Das Experiment verwendet den Mößbauer-Effekt, der eine exakte Frequenzmessung ermöglicht, und wurde im Jefferson-Turm an der Harvard University durchgeführt. Siehe auch Tests der allgemeinen Relativitätstheorie.

Physikalische Grundlagen

Gravitation

Einstein zeigte 1911[2], dass aus der Energieerhaltung schon für klassische Betrachtungen folgt, dass Photonen im Schwerefeld genauso beeinflusst werden wie massive Teilchen. Sein Gedankenexperiment beschreibt ein Teilchen, das im freien Fall kinetische Energie gewinnt und am Erdboden durch Annihilation Strahlung aussendet. Dieses Teilchen hat vor dem Fall nur Ruheenergie und danach eine Gesamtenergie aus Ruheenergie und kinetischer Energie $ E_\mathrm{t,unten}= m_\mathrm{t}c^2 + m_\mathrm{t}gh $. Das hypothetische bei der Annihilation erzeugte Photon hätte diese Energie und könnte nun zum Ausgangspunkt des fallenden Teilchens gesandt werden. Wenn das Photon nicht von der Gravitation beeinflusst würde, hätte es am oberen Ende der Fallstrecke immer noch die volle Teilchenenergie $ E_\mathrm{t}= m_\mathrm{t}c^2 + m_\mathrm{t}gh $ und könnte zur erneuten Erzeugung eines fallenden Teilchens $ E=m_\mathrm{t}c^2 $ genutzt werden. Dabei würde die überschüssige Energie von $ E_\mathrm{kin}= m_\mathrm{t}gh $ frei werden. Nur wenn das Photon auf dem Weg nach oben Energie verliert, ist die Energieerhaltung gewährleistet.

Für die Photonenenergie gilt also in den Einheiten des erzeugenden Teilchens $ E_\text{unten} = m_\mathrm{t}c^2 + m_\mathrm{t}gh $ und $ E_\mathrm{oben} = m_\mathrm{t}c^2 $. In den Einheiten des Photons folgt daraus $ E_\text{unten} = \left(1+\frac{gh}{c^2}\right) E_\text{oben} $ bzw. in der Frequenz $ \frac{\Delta f}{f} = \frac{gh}{c^2} $.

Eine Höhendifferenz von 22,56 Metern ergibt in dieser Newtonschen Näherung eine zu erwartende Frequenzverschiebung von $ \Delta f/f = 2{,}46\cdot10^{-15} $.

Messung und Aufbau

Die Energieänderung des Photons auf seinem Weg durch das Gravitationsfeld zeigt sich in einer Frequenzänderung. Die verwendete Gammastrahlung hat eine sehr geringe Linienbreite, wodurch sich die Frequenzänderung deutlich zeigt. Um die Veränderung zwischen Quelle und Absorber zu messen, wählten Pound und Rebka die resonante Absorption der Strahlung, die durch den gleichen Mechanismus wie die Emission die gleiche Linienbreite besitzt. So ist der Absorber je nach verwendetem Atomkern nur für einen eigenen sehr engen Frequenzbereich empfindlich. Im Fall des Mößbauereffekts, also der rückstoßfreien Emission und Absorption, sind diese Bereiche für den Emitter und Absorber gleich. Daraus folgt also: wenn sich die Frequenz der Strahlung auf dem Weg ändert, zeigt sich in einem System von zueinander in Ruhe befindlichen Emitter und Absorber mit Kernen, deren Linienpositionen gleich sind, keine Absorption. Da sich allerdings die Atome aufgrund ihrer thermischen Energie bewegen, sind die aussendenden und empfangenden Atome nicht in Ruhe zueinander. Diesen Effekt der thermischen Dopplerverbreiterung kompensiert man durch starke Kühlung, bei der auch der Mößbauereffekt auftritt. Wenn man nun die Quelle oder den Absorber mit einer bestimmten Geschwindigkeit relativ zum anderen bewegt, kann man durch den Dopplereffekt auf verschiedenen Frequenzen auf Absorption messen. Im Fall des Pound-Rebka-Experiments wurde die Quelle auf einer Hydraulikplatte montiert und so genau in Position gebracht. Zwischen der Hydraulik und der Quelle wurden während des Versuchs verschiedene elektroakustische Wandler verwendet, um die Quelle in sinusförmige Auf-und-Abbewegung zu versetzen. Aus dem Zeitpunkt innerhalb dieses Bewegungszyklus und damit aus der momentanen Geschwindigkeit der Quelle, bei der die Absorption auftritt, kann man folgern, um wie viel sich die Frequenz des Photons geändert hat.

Quelle und Absorber wurden in diesem Experiment auf einen vertikalen Abstand von 74 Fuß, also ungefähr 22,56 m, montiert. Während der Versuchsdurchführung wurden die Positionen mehrfach getauscht, um mit der Differenz der Frequenzverschiebung für den Flug des Photons nach oben bzw. nach unten den Einfluss der Schwerkraft nachzuweisen. Im Zwischenraum befand sich ein Foliensack, durch den Helium gepumpt wurde, um die Streuung der Gammastrahlung im Vergleich zu Luft zu verringern.

Den größten systematischen Einfluss auf die Frequenzverschiebung hatte allerdings die Temperaturdifferenz zwischen Quelle und Absorber. Diese führte zu einem vierfach höheren Effekt als die Gravitation und musste mit hoher Präzision bestimmt werden.

Durchführung und Ergebnisse

Bis zur Erstveröffentlichung der Ergebnisse am 1. April[3] hatten sie seit dem Beginn der Messungen am 22. Februar 1960 an 10 Tagen gemessen. An den ersten zwei Tagen war die Quelle am Boden aufgebaut und die gemessene Frequenzänderung der Photonen während des Flugs betrug in den 6 durchgeführten Messungen nach Berücksichtigung der Temperaturdifferenz im Mittel $ \Delta f/f = -19{,}7\cdot10^{-15} $. Darauf folgend wurde an 2 Tagen mit der Quelle am oberen Ende des Aufbaus gemessen und die Frequenzänderung in den 8 durchgeführten Messungen betrug im Mittel $ \Delta f/f = -15{,}5\cdot10^{-15} $. Beim Flug nach oben ist wie zuvor beschrieben ein Energieverlust, also eine Rotverschiebung, zu erwarten und nach unten eine Blauverschiebung. In den Messergebnissen stecken ein gravitativer Anteil und verschiedene festkörperphysikalische Effekte $ \Delta f = \Delta f_\mathrm{grav} + \Delta f_\mathrm{Rest} $. Im Fall der Rotverschiebung gilt $ \Delta f_\mathrm{grav}< 0 $ und für die Blauverschiebung $ \Delta f_\mathrm{grav}> 0 $. Die Differenz der Verschiebungen für die beiden unterschiedlichen Richtungen ergibt also den doppelten Effekt, der für die einfache Strecke zu erwarten wäre. Das Messergebnis entspricht also in Größe und Genauigkeit einem reinen Rotverschiebungsexperiment mit 45 m Steighöhe oder einem Blauverschiebungsexperiment mit 45 m Fallhöhe. Für die ersten 4 der 10 Messtage ergab sich eine betragsmäßige Differenz von $ (4{,}2 \pm 1{,}1)\cdot10^{-15} $ in Übereinstimmung mit der Vorhersage von $ 4{,}92\cdot10^{-15} $. Im weiteren Verlauf konnte die Genauigkeit durch die größere Stichprobe verbessert werden und das publizierte Ergebnis nach abgeschlossener Messung war $ (-5{,}13 \pm 0{,}51)\cdot10^{-15} $ (gemäß der von den Autoren verwendeten Vorzeichenkonvention für die Differenz) und bestätigt damit die Vorhersage mit einer Genauigkeit von 10 %.

Einzelnachweise

  1. R. V. Pound, G. A. Rebka Jr.: Gravitational Red-Shift in Nuclear Resonance. In: Physical Review Letters. 3, Nr. 9, 1. November 1959, S. 439–441. doi:10.1103/PhysRevLett.3.439. Abgerufen am 23. September 2006.
  2. A. Einstein: Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. AdP 35, 898 (1911)
  3. R. V. Pound, Rebka Jr. G. A.: Apparent weight of photons. (abstract) In: Physical Review Letters. 4, Nr. 7, 1. April 1960, S. 337–341. doi:10.1103/PhysRevLett.4.337. Abgerufen am 23. September 2006.

Diese Artikel könnten dir auch gefallen



Die letzten News


11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.