Polardiagramm (Strömungslehre)

Polardiagramm (Strömungslehre)

Ein Polardiagramm (kurz: Polare) ist in der Strömungslehre eine grafische Darstellung der auf einen angeströmten Körper wirkenden Kräfte für verschiedene Anstellwinkel. Dargestellt werden nicht die Kräfte selbst, da sie unter anderem sehr von der Anströmgeschwindigkeit abhängen, sondern dimensionslose Beiwerte. Diese Darstellung wurde von Otto Lilienthal entwickelt, um die aerodynamischen Eigenschaften von Flügeln zu beurteilen. Das Polardiagramm wird bis heute für die Charakterisierung von Profilen und Flugzeugen eingesetzt.

Lilienthalpolare

Lilienthalpolare

Das eigentliche Polardiagramm, die sogenannte Lilienthalpolare, ist eine Auftragung des Auftriebskoeffizienten $ c_a $ an der Ordinate (vertikale Achse) über den Widerstandskoeffizienten $ c_w $ an der Abszisse (horizontale Achse). Neben dieser Widerstandspolare existiert auch die Momentenpolare, bei der der Momentkoeffizient $ c_m $ über dem Anstellwinkel abgetragen ist. Die Strecke zwischen Koordinatenursprung und einem Punkt auf dieser Kurve wird als Polstrahl bezeichnet. Bei der Widerstandspolare ist der Anstieg des Polstrahls das Gleitverhältnis E für den jeweiligen Punkt.

Widerstandspolaren erlauben einen Rückschluss auf die aerodynamische Güte eines Körpers. Beispielsweise ist bei Tragflügelprofilen im Segelflugzeugbau das Einsatzgebiet, Schnellflug oder gute Langsamflugeigenschaften, anhand des Kurvenverlaufs ersichtlich.

Spezielle Punkte auf der Lilienthalpolare am Beispiel eines Profils

NACA 2412
Datei:NACA2412 L-Polare.png
Lilienthalpolare des NACA 2412. Der Berührkreis ist zur Verdeutlichung nicht maßstäblich gezeichnet

Die Abbildung rechts zeigt eine mit XFOIL gerechnete Lilienthalpolare des Profils NACA 2412. Es lassen sich hier eine Reihe von speziellen Punkten kennzeichnen:

  • „1“ Minimaler Auftrieb, $ c_{a,min} $. Das Profil weist hier den kleinsten (negativsten) Auftriebsbeiwert auf. Dieser Punkt entspricht der Mindestfluggeschwindigkeit im horizontalen Rückenflug.
  • „2“ Nullauftrieb. Das Profil erzeugt keinen Auftrieb, $ c_a = 0 $. Dieser Punkt entspricht dem Parabelflug. Der Widerstandsbeiwert an diesem Punkt wird mit $ c_{w0} $ bezeichnet.
  • „3“ Kleinste Gesamtluftkraft, $ c_{r,min} $. Die Polare hat hier den kleinsten Abstand zum Ursprung. $ c_{r,min} $ ist nur für Profile, die oberhalb von $ c_a = 0 $ eine ausgeprägte Laminardelle aufweisen, nennenswert von $ c_{w0} $ verschieden. Ein Flugzeug erreicht hier im fast senkrechten Sturzflug die größte aerodynamisch mögliche Geschwindigkeit.
  • „4“ Geringster Widerstand, $ c_{w,min} $. Für symmetrische Profile liegt er meist (aber nicht zwingend!) bei $ c_a = 0 $.
  • „5“ Bestes Gleiten, $ E_{max} $, Berührpunkt des steilsten Polstrahls. Der Gleitwinkel $ \gamma $ wird hier minimal, ein Flugzeug erreicht hier im Gleitflug die größte Strecke bei gegebenem Höhenverlust ($ \tan \gamma = 1/E $). Dieser Punkt ist mit der Geschwindigkeit des besten Gleitens (V*) verknüpft. Für Strahlflugzeuge ist dies auch die Geschwindigkeit besten Steigens und minimalen Schubs. Für Propellerflugzeuge ist es die Geschwindigkeit des geringsten Widerstands, aber nicht die Geschwindigkeit für minimale Leistung, diese ist 0,76 × V*.
  • „6“ Bestes Steigen, geringstes Sinken. Die so genannte Steigzahl $ c_a^{3} / c_w^{2} $ wird maximal. Hier hat ein Flugzeug im Gleitflug die kleinste Sinkgeschwindigkeit. Die Geschwindigkeit geringsten Sinkens für Propeller- und Strahlflugzeuge ist 0,76 × V*.

Hinweis: Die Punkte „5“ und „6“ finden sich ganz analog auch für den negativen Teil der Polare.

  • „7“ Maximalauftrieb, $ c_{a,max} $. Das Profil erreicht seinen größten Auftrieb, $ c_a $ wird maximal. Dies entspricht der geringsten Fluggeschwindigkeit im Horizontalflug.

Die gezeigten Punkte finden sich nicht nur auf Profilpolaren, sondern ebenfalls auf Polaren für Gesamtflugzeuge.

Aufgelöste Polare

Beispiel für eine aufgelöste Polare: Auftriebspolare

Bei aufgelösten Polaren erfolgt die Darstellung der Kraftkoeffizienten an der Ordinate über dem Anströmwinkel an der Abszisse. Weit verbreitet ist das aufgelöste Polardiagramm von Auftriebskoeffizienten zum Anstellwinkel $ \alpha $. Charakteristisch ist ein nahezu linearer Verlauf bei kleinen Anstellwinkeln, bei symmetrischen Flügelprofilen durch den Koordinatenursprung. Der Verlauf neigt sich bei hohen Anstellwinkeln, läuft durch den Scheitelpunkt und fällt daraufhin, im sogenannten überzogenen Flugzustand, wieder ab. Der Verlauf um diesen Scheitelpunkt, den maximal erreichbaren Auftriebskoeffizienten, charakterisiert das Abrissverhalten eines Flügelprofils oder Flugzeuges.

Aufgelöste Polaren verdeutlichen den Einfluss von Größen wie beispielsweise der Reynolds-Zahl oder Formparametern wie beispielsweise Auftriebshilfen und Oberflächenbeschaffenheit auf einzelne Beiwerte eines angeströmten Körpers. Bei bodengebundenen Fahrzeugen ist beispielsweise der Seitenwindeinfluss auf die Fahrstabilität entscheidend.

Aufgelöste Polare für das obige Beispiel

Datei:NACA2412 alpha-Polare.png
Aufgelöste Polare des NACA 2412

In der aufgelösten Polare des NACA 2412 ist der Verlauf von Auftriebs-, Widerstands- und Momentenbeiwert jeweils über dem Anstellwinkel aufgetragen. Zur Eindeutigkeit des Momentenbeiwertes muss noch dessen Bezugspunkt angegeben werden. Fehlt diese Angabe, so bezieht sich das Moment üblicherweise (und ebenso in diesem Beispiel) auf einen Punkt bei 25 % Profiltiefe („t/4“). Es lassen sich hier noch einige weitere wichtige Größen ablesen:

  • $ \alpha_0 $: der Anstellwinkel für den sich Nullauftrieb ergibt.
  • $ c_{a0} $: der Auftrieb beim Anstellwinkel null.
  • $ \frac{\partial c_a}{\partial\alpha} $: der Auftriebsanstieg.
  • Die Größe des linearen Teils der Auftriebspolare. Hier tritt i. A. keinerlei Ablösung auf.
  • $ \alpha_{krit} $: Der Anstellwinkel bei Maximalauftrieb.
  • $ c_{m0} $: der Momentenbeiwert bei Nullauftrieb.
  • Der (nahezu) horizontale Verlauf der Momentenkurve im linearen Teil des Beispiels zeigt, dass der Neutralpunkt (sehr nahe) im Momentenbezugspunkt (hier: t/4) liegt.

Literatur

Siehe auch

  • Geschwindigkeitspolare

Weblinks


Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.