Pfeilung

Pfeilung

Der Titel dieses Artikels ist mehrdeutig. Zu Pfeilsymbolen in elektrischen Schaltplänen siehe Zählpfeil.
Pfeilung

Pfeilung nennt man den Winkel zwischen Tragflügel und Flugzeugquerachse in der Draufsicht. Sie wird an der Vorderkante (Vorderkantenpfeilung), der Hinterkante (Hinterkantenpfeilung) und bei einem Viertel der Flügeltiefe (t/4-Pfeilung) gemessen.

Die Idee zur Tragflächenpfeilung im Zusammenhang mit dem Überschallflug ging 1935 von Adolf Busemann aus.[1]

Positive Pfeilung

bei konstantem Flügelquerschnitt und unendlicher Streckung

Abb. 1: Aufteilung der Geschwindigkeiten
Datei:Pfeilung Stromlinien Euler.png
Abb. 2: Gekrümmte Stromlinien am gepfeilten Tragflügel
Abb. 3: Druckverteilung einer reinen 2D-Rechnung im Normalschnitt (rot) gegenüber der transformierten Druckverteilung des Profilschnitts (grün).
Dieser Artikel oder Abschnitt ist nicht allgemeinverständlich formuliert. Die Mängel sind unter Diskussion:Pfeilung beschrieben. Wenn du diesen Baustein entfernst, begründe dies bitte auf der Artikeldiskussionsseite und ergänze den automatisch erstellten Projektseitenabschnitt Wikipedia:Unverständliche Artikel#Pfeilung um {{Erledigt|1=~~~~}}.

Ein Flügel mit unendlicher Streckung und ohne Zuspitzung habe überall den gleichen Querschnitt. Dadurch sind hier die Vorderkante und die Hinterkante – und somit auch die Linie bei einem Viertel der Flügeltiefe (t/4-Linie) – parallel und deren Pfeilungswinkel $ \phi $ gleich. Die Anströmgeschwindigkeit $ U_\infty $ kann dann in eine Komponente $ U_n $ senkrecht (normal) zum Flügel und eine Komponente $ U_t $ tangential dazu aufgeteilt werden (s. Abb. 1), die gemäß den Eulergleichungen keinen Einfluss auf die Umströmung hat.

Dadurch wird es möglich, die Umströmung des Flügels anhand eines einzigen Schnitts zu behandeln. Die Richtung der Strömung liegt dabei im Allgemeinen nicht in der Ebene des Schnitts. Abb. 2 zeigt die gekrümmten Strömungslinien, die die Schnittfläche schneiden; dennoch sind sie in jedem parallelen Querschnitt bis auf eine Parallelverschiebung die gleichen. Die Strömungsgrößen in der Schnittebene sind also in diesem Fall zwar dreidimensionale Größen, aber nur von zwei Variablen abhängig: der Höhe über der Flügelunterkante und der Tiefe in Bezug auf den Flügelquerschnitt.

Da $ \textstyle U_n=U_\infty\,\cos\phi $ geringer ist als $ \textstyle U_\infty $ sind der Auftrieb, der Auftriebsgradient und der Druckwiderstand gegenüber einem ungepfeilten Flügel reduziert. Diese Effekte, die von der schrägen Anströmung der Flügelkante unter dem allgemeineren Schiebewinkel $ \beta $ abhängen, bezeichnet man als Cosinus-Beta-Effekte. Beim Pfeilflügel sinkt überdies der Wellenwiderstand stärker ab als der Auftrieb und so steigt bei transsonischer Anströmung das Gleitverhältnis des Flügels. Die kritische Machzahl und die Machzahl des Widerstandsanstiegs steigen ebenfalls an.

Die Krümmung der Stromlinien am Grenzschichtrand führt zu dreidimensionalen Geschwindigkeitsprofilen in der Grenzschicht. Durch die darin vorhandenen Wendepunkte wird die Grenzschicht reibungslos instabil. Insbesondere führen Querströmungswirbel zu einer eine Querströmungsinstabilität, deren Anfachung am gepfeilten Flügel üblicherweise den Übergang vom laminaren in den turbulenten Zustand der Grenzschicht auslöst. Der Einfluss der zweidimensionalen Tollmien-Schlichting-Wellen tritt hier in den Hintergrund. Dadurch vollzieht sich der laminar-turbulente Übergang nahe der Tragflügelnase. Tragflügel üblicher Pfeilung werden nahezu vollturbulent umströmt.

mit endlicher Streckung

Beim endlichen Flügel führt die Pfeilung zu einer Veränderung der Auftriebsverteilung.

  • Positive Pfeilung ($ \phi $ > 0) führt zu einer ca-Überhöhung im Außenbereich und zu einer Reduktion im Bereich der Flügelwurzel.
  • Negative Pfeilung ($ \phi $ < 0) führt zu einer ca-Überhöhung im Bereich der Flügelwurzel und zu einer Reduktion im Außenbereich.

Diese Deformation der Auftriebsverteilung führt zu einer Erhöhung des induzierten Widerstandes, welche durch geeignete Schränkung und Tiefenverteilung verhindert werden muss.

Beim positiv gepfeilten Flügel kommt es auch zu einer Verschlechterung des Abreißverhaltens, da das camax hier zuerst an der Flügelspitze erreicht wird und der Strömungsabriss dort (sowohl im Bereich der Querruder als auch am „hinteren“ Teil des Flügels) zuerst auftritt. Ein weiterer negativer Effekt ist das Abfließen von Grenzschichtmaterial Richtung Flügelspitze, welches dort zu einer Grenzschichtaufdickung und zu einer größeren Ablöseneigung führt. Geeignete Gegenmaßnahmen sind hier die Verwendung von Grenzschichtzäunen, Sägezähnen an der Flügelvorderkante (vgl. F-4 Phantom II), die Verwindung des Flügels und die Anpassung des Profils. Ein positiv gepfeilter Flügel führt außerdem zu einer erhöhten Richtungsstabilität sowie zu einem positiven Schiebe-Roll-Moment.

Die Dreidimensionalität des endlichen Flügels führt zu einer lokalen Entpfeilung der Isobaren an der Flügelwurzel sowie in der Nähe des Randbogens. Die Isobaren müssen aus Symmetriegründen z. B. an der Flügelwurzel senkrecht zur Symmetrieebene liegen. Damit verliert ein realer Flügel in diesen Bereichen die Vorteile der Pfeilung. Um diesen Nachteil auszugleichen wird versucht das Konzept der „geraden Isobaren“ umzusetzen, in dem die Profilform lokal in diesen Bereichen so angepasst wird, so dass ein über die gesamte Spannweite gerader Isobarenverlauf erzielt wird. Ein weiterer Effekt des Pfeilflügels ist die geringere Böenempfindlichkeit. Diese ergibt sich aus dem verminderten Auftriebsanstieg, der direkt proportional zum Böenlastvielfachen ist.

Die Pfeilung braucht an einem Flügel nicht konstant zu verlaufen. Entweder sind die einzelnen Flügelabschnitte unterschiedlich gepfeilt, oder der Tragflügel kann geschwenkt werden (Schwenkflügler).

Negative Pfeilung

Luftstrom an negativ und positiv gepfeilten Tragflächen am Beispiel der Grumman X-29

Die Pfeilung ist in der Regel positiv (beide Kanten der Tragflächen sind nach hinten gezogen), es gibt jedoch seit Beginn des praktischen Einsatzes der Pfeilung auch Konstruktionen mit negativer Pfeilung. Wie im Bild gezeigt läuft der Luftstrom bei dieser Flügelgeometrie zum Rumpf hin anstatt vom Rumpf weg, wie bei herkömmlichen Konstruktionen. Dadurch kann der Luftstrom an Flügelspitzen und dahinterliegenden Steuerflächen wesentlich langsamer sein, bevor die laminare Strömung abreißt (Strömungsabriss, engl. stall) und damit der Auftrieb verloren geht. Dadurch kann eine außerordentliche Manövrierbarkeit erreicht werden, wenn die Trag- und Steuerflächen in einem viel steileren Winkel zum Luftstrom angestellt werden. Das Flugzeug hat auch bei wesentlich geringerer Fluggeschwindigkeit noch genügend Luftstrom über den Steuerflächen von Seiten- und Höhenruder. Deshalb wird diese Tragflächengeometrie bei extrem wendigen Abfangjägern eingesetzt.

Bereits während des Zweiten Weltkriegs wurde an Flugzeugen mit negativer Tragflächenpfeilung geforscht. Es machte damals Probleme, die Materialbelastungen bei hohen Geschwindigkeiten sicher abzuleiten. In neuerer Zeit gibt es durch Faserverbundwerkstoffe (zum Beispiel kohlenstofffaserverstärkter Kunststoff) die technischen Voraussetzungen, Tragflächen mit negativer Pfeilung zu konstruieren, die auch hohen Torsions- und Scherkräften standhalten. Segelflugzeuge mit dieser Flügelgeometrie, vorwiegend Doppelsitzer, gibt es seit vielen Jahrzehnten. Das hat aber den Grund, dass die Tragflügelwurzel, also der Anschluss an den Rumpf, nach hinten gelegt wird, damit der zweite Sitz vor dem Holm Platz findet.

Beispiele

  • Vorder- und Hinterkante der Tragflächen negativ gepfeilt:
Grumman X-29
    • Cornelius XFG-1 (Schwanzloser Lastensegler)
    • DFS 42 (Versuchsgleiter)
    • FTAG Esslingen E11[2] (Doppelsitzersegelflugzeug zur Untersuchung von extremer Vorpfeilung)
    • Grumman X-29 (Experimentalflugzeug)
    • HFB 320 (Zivilmaschine)
    • Junkers Ju 287 (Prototyp)
    • SAT SR-10 (Prototyp, Jettrainer)
    • Schleicher ASK 13 (Segelflugzeug)
    • Schleicher K 7 (Segelflugzeug)
    • Suchoi Su-47 (Experimentalflugzeug)

Anwendung

Schlierenfoto eines Modells mit geradem Tragflügel bei Mach 1,2. Gut zu sehen ist der Stau an der Flügelvorderkante.
Schlierenfoto eines Modells mit gepfeiltem Tragflügel bei Mach 1,2. Es existiert kein Stau an der Flügelvorderkante.

Das Ausmaß der Pfeilung von Tragflächen hängt von der zu erwartenden Luftströmungsgeschwindigkeit um die Tragflächen ab. Hier muss ein Kompromiss zwischen einem hohen Auftrieb bei niedrigen Geschwindigkeiten für den Start (geringe Pfeilung) gegenüber dem niedrigen Strömungswiderstand und geringen Verwirbelungen bei Reisegeschwindigkeit (starke Pfeilung) gefunden werden, mit dem Ziel, eine laminare Luftströmung über alle Steuerflächen in allen zu erwartenden Fluglagen zu erreichen. Zeichnet man den Luftdruck und die jeweils dazugehörenden Geschwindigkeiten in ein Koordinatensystem, so ergibt sich innerhalb der Linien ein gedachter Bereich, in dem das Flugzeug sicher eingesetzt werden kann. Diese Hüllkurve, als Flugenveloppe bezeichnet, ist für jedes Flugzeugmodell unterschiedlich und hängt neben vielen anderen Faktoren zu einem entscheidenden Maße von der Tragflügelgeometrie und damit der Pfeilung ab.

Vereinfachend sind die folgenden grundlegenden Auslegungen anzuführen: Flugzeuge, deren überwiegende Einsatzgebiete in geringer Höhe und bei eher niedrigen Geschwindigkeiten liegen, sollten ohne Pfeilung ausgestattet sein. Verkehrsflugzeuge, die nur in großen Höhen schnell (d. h. transsonisch) fliegen, aber nahe Meereshöhe eher im mittleren Geschwindigkeitsbereich liegen, erhalten eine mittlere Pfeilung.

Die Concorde, die nur in großen Höhen sehr schnell (Mach 2, d. h. supersonisch) flog, hatte stark gepfeilte Flügel.

Literatur

  • Adolf Busemann: Aerodynamischer Auftrieb bei Überschallgeschwindigkeit. Vortrag auf der 5. Volta-Tagung in Rom, 1935.
  • Ernst Götsch: Luftfahrzeugtechnik. Motorbuchverlag, Stuttgart 2009, ISBN 978-3-613-02912-5.

Fußnoten

  1. Werner Heinzerling: Flügelpfeilung und Flächenregel, zwei grundlegende deutsche Patente der Flugzeugaerodynamik, München ohne Jahr, (Deutsches Museum). online (PDF; 10 MB)
  2. Foto der FTAG E11 der Akaflieg der HS Esslingen

Weblinks


Diese Artikel könnten dir auch gefallen



Die letzten News


11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.