Otto-Kreisprozess

Otto-Kreisprozess

Der Otto-Kreisprozess (Gleichraumprozess) ist der Vergleichsprozess für den Ottomotor, der nach dem deutschen Erfinder Nicolaus Otto benannten Verbrennungskraftmaschine. Als Thermodynamischer Kreisprozess ist er rechtslaufend, d. h. Wärmeenergie wird in Bewegungsenergie (Arbeit) umgewandelt ($ \rightarrow $ Wärmekraftmaschine).

Die Bezeichnung Gleichraum beruht auf der Annahme, dass die Wärmezufuhr bei gleichbleibendem Volumen (isochor) stattfindet. Dazu im Gegensatz steht der Gleichdruckprozess (auch Diesel-Kreisprozess), bei dem die Wärmezufuhr bei konstantem Druck (isobar) erfolgt. Beide Kreisprozesse eignen sich nicht zur Berechnung der thermodynamischen Verhältnisse in Kolbenmotoren. In der Praxis muss der gemischte Kreisprozess angewandt werden.

Es gab Anfang des 20. Jahrhunderts Gleichraum-Gasturbinen, die den Gleichraumprozess mit zyklischer Verbrennung des Gasgemisches einsetzten. Diese nach seinem Konstrukteur Hans Holzwarth benannten Turbinen brauchten keinen Verdichter. Sie wurden durch die kontinuierlich arbeitenden Gleichdruck-Gasturbinen verdrängt.

Der Vergleichsprozess

p-v-Diagramm des idealen Otto-Prozesses
T-s-Diagramm des idealen Otto-Prozesses

besteht aus vier Zustandsänderungen eines idealen Gases innerhalb eines geschlossenen Systems. Er beinhaltet also keine chemische Umsetzung und auch keinen Ladungswechsel.

Die durch den Linienzug 1-2-3-4 umschlossene Fläche in den Diagrammen entspricht der spezifischen Prozessarbeit $ w $.

Wirkungsgrad

Zur Veranschaulichung und leichten Berechnung der Zustandsgrößen wird als Arbeitsmedium ein ideales Gas mit temperaturunabhängiger spezifischer Wärmekapazität angenommen. Der thermische Wirkungsgrad des idealen Otto-Prozesses hängt dann nicht von der zugeführten Wärmemenge ab und lässt sich folgendermaßen bestimmen:

$ \eta_{th \, \mathrm {Otto}} = 1 - \frac{1}{\varepsilon^{\varkappa-1}} $

Je höher das Verdichtungsverhältnis $ \tfrac{V_1}{V_2} $ und je höher der Isentropenexponent, desto höher der Wirkungsgrad.

$ \ V_{1} $ : Anfangsvolumen bzw. Expansionsvolumen
$ \ V_{2} $ : Kompressionsvolumen
$ \varepsilon = \frac {V_1}{V_2} $ : Volumenverhältnis (Verdichtungsverhältnis)
$ \varkappa = \frac{c_p}{c_v} $ : Isentropenexponent
$ \ c_p $ : Spezifische Wärmekapazität bei konstantem Druck
$ \ c_v $ : Spezifische Wärmekapazität bei konstantem Volumen

Der thermische Wirkungsgrad des Gleichraumprozesses ist bei gleichem Verdichtungsverhältnis höher als der des Gleichdruckprozesses.

Die Gleichungen für die Zustandsänderungen

Die spezifische Wärmezufuhr oder Heizenergie $ q_{zu} $ bestimmt die Druck- bzw. Temperaturzunahme. Für den Wirkungsgrad spielt sie keine Rolle.

$ p_2 = p_1\cdot\varepsilon^\varkappa $; Verdichtungsdruck
($ p_1 $ ist der Anfangsdruck, z. B. 1 bar)
$ T_2 = T_1\cdot\varepsilon^{\varkappa-1} $; Verdichtungstemperatur
($ T_1 $ ist die Anfangstemperatur vor dem Verdichtungstakt, z. B. 300 K)
$ T_3 = T_2 + \frac{q_{zu}}{c_v} $; Temperatur nach der Wärmezufuhr (Maximale Temperatur)
($ q_{zu} $ ist die zugeführte spezifische Wärme)
$ p_3=p_2\cdot \frac{T_3}{T_2} $; Druck nach der Wärmezufuhr (Maximaler Druck)
$ p_4 = p_3\cdot\varepsilon^{-\varkappa} $; Druck nach der Expansion

Der ideale Otto-Motor

Gleichraumprozess beim Kolbenmotor

Der ideale Motor hat keine Dissipationsverluste, mechanische Reibungsverluste, Hilfsaggregate, Zylinderkühlung und Dichtigkeitsverluste. Das Arbeitsgas hat über den gesamten Kreisprozess die gleichen Eigenschaften und keine Strömungsverluste. Es gibt keine Durchmischung von Ladungsgemisch mit Abgas.

Es gibt Zwei- und Vier-Takt-Motoren. Ein Takt besteht jeweils aus einem Kolbenhub bzw. einer halben Kurbelwellenumdrehung. Beim 4-Takt-Ottomotor lassen sich die Zustandsänderungen wie folgt den Arbeitstakten zuordnen:

  • 1. Takt = Ansaugen: Der Zylinder füllt sich mit Frischluft 0$ \rightarrow $1.
  • 2. Takt = Verdichten und Wärmezufuhr: isentrope Kompression 1$ \rightarrow $2 und isochore Wärmezufuhr $ q_{zu} $ durch Zünden und Verbrennen der Gasladung 2$ \rightarrow $3 im oberen Totpunkt, also bei konstantem Volumen (Gleichraumverbrennung).
  • 3. Takt = Arbeitstakt: Isentrope Expansion 3$ \rightarrow $4.
  • 4. Takt = Ausblastakt (Wärmeabfuhr): Durch das Öffnen des Auslassventils expandieren die Abgase im unteren Totpunkt ohne weitere Arbeitsleistung nach außen 4$ \rightarrow $1, und der Rest wird durch den Kolbenhub 1$ \rightarrow $0 nach außen geschoben. Dabei wird die im Abgas enthaltene Wärme $ q_{ab} $ an die Umgebung abgegeben. Der ideale Prozess berücksichtigt nicht, dass die Restmenge im Kompressionsraum nicht den Umgebungszustand erreicht.

Der reale Otto-Motor

Beim realen Ottomotor begrenzt die Klopffestigkeit des Gasgemisches den Verdichtungsdruck. Die Zustandsänderungen des Gleichraumprozesses entsprechen nicht dem realen Motor, da für die Verbrennung Zeit erforderlich ist (s. u.). Mit einem entsprechend angepassten Seiliger-Kreisprozess erhält man eine wesentlich bessere Annäherung. Das Luft-Gasgemisch beim Verdichten und die Brenngase beim Expandieren haben unterschiedliche Stoffeigenschaften und sind stark temperaturabhängig (kleinerer Isentropenexponent und größere Wärmekapazität bei hohen Temperaturen). Abgase (verbrannte Luft, hauptsächlich Stickstoff, Wasserdampf und Kohlenstoffdioxid) haben andere thermodynamische Eigenschaften als Luft-Gasgemische oder Frischluft. Deshalb ist auch der Seiligerprozess für realitätsnahe Berechnungen zu ungenau. Gegenüber dem Vergleichsprozess gibt der reale Prozess im Motor zudem eine geringere Arbeit ab, weil:

  • das Ansaugen und Ausschieben mit Reibungsverlusten verbunden ist (linksdrehende Schleife zwischen 0 und 1 im p-V-Diagramm, Ladungswechselarbeit)
  • die Verbrennung nicht isochor erfolgt, sondern Zeit erfordert, in der sich die Kurbelwelle weiterdreht. Deshalb erfolgt die Zündung vor dem oberen Totpunkt, und die Verbrennung ist erst nach dem o.T. abgeschlossen. Die Spitze im Diagramm bei 3 liegt tiefer und ist abgerundet.
  • ein Teil der durch die chemische Reaktion zugeführten Energie (neben unvollständiger Verbrennung und endothermer Bildung von Stickoxid) ohne Arbeitsleistung durch Wärmeübergang an die Zylinderwände verloren geht. Der Expansionsverlauf liegt deshalb unterhalb des idealen Verlaufes.
  • das Auslassventil vor dem unteren Totpunkt geöffnet wird. Die Prozessfläche wird im Punkt 4 nach unten abgerundet.

Das Verhältnis von im Motor freigesetzter zu theoretischer Arbeit des Prozesses wird als Gütegrad bezeichnet. Reale Motoren haben zusätzlich eine mechanische Verlustleistung aus Reibung und der erforderlichen Leistung für Neben- und Hilfsantriebe (Ventile, Pumpen für Öl und Kühlwasser, Ventilator), die ca. 10 % der Nennleistung betragen kann und den Wirkungsgrad weiter vermindern.

Literatur

Siehe auch

  • Gleichdruckprozess bzw. Diesel-Prozess
  • Seiliger-Prozess (gemischter Vergleichsprozess beim Kolbenmotor)
  • Carnot-Prozess (theoretisch maximaler thermodynamischer Wirkungsgrad)
  • Joule-Prozess (Gleichdruckprozess bei der Turbine)

Weblinks


Diese Artikel könnten dir auch gefallen



Die letzten News


13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.
13.06.2021
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
13.06.2021
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.