Numerische Apertur

Numerische Apertur

Die Artikel Apertur, Numerische Apertur, Aperturblende, Gesichtsfeldblende, Leuchtfeldblende, Fotografische Blende und Blende (Optik) überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zusammenzuführen (→ Anleitung). Beteilige dich dazu an der betreffenden Redundanzdiskussion. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz und vergiss nicht, den betreffenden Eintrag auf der Redundanzdiskussionsseite mit {{Erledigt|1=~~~~}} zu markieren. Kai Kemmann (Diskussion) 11:31, 5. Apr. 2017 (CEST)
Die Artikel Kritische Blende, Eintrittspupille, Austrittspupille, Blendenzahl und Öffnungsverhältnis überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zusammenzuführen (→ Anleitung). Beteilige dich dazu an der betreffenden Redundanzdiskussion. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz und vergiss nicht, den betreffenden Eintrag auf der Redundanzdiskussionsseite mit {{Erledigt|1=~~~~}} zu markieren. Kai Kemmann (Diskussion) 11:31, 5. Apr. 2017 (CEST)

Die numerische Apertur (Formelzeichen $ A_\text{N} $, NA oder n.A., von lateinisch apertus, dt. offen) beschreibt das Vermögen eines optischen Elements, Licht zu fokussieren. Der Begriff wurde vom Physiker Ernst Abbe eingeführt.[1] Bei Objektiven bestimmt sie die minimale Größe des in seinem Fokus erzeugbaren Lichtflecks und ist somit eine wichtige, die Auflösung begrenzende Größe.

Der halbe objektseitige Öffnungswinkel α für die Bestimmung der numerischen Apertur bei der optischen Abbildung eines Objektpunktes O nach O' mit Brechung der Randstrahlen an der Hauptebene H einer Feldlinse

Genauer ergibt sich die numerische Apertur $ A_\text{N} $ aus dem Produkt des Sinus des halben objektseitigen Öffnungswinkels (Akzeptanzwinkel) $ \alpha $ und dem Brechungsindex n des Materials zwischen Objektiv und Fokus (siehe auch Immersion (Mikroskopie)):

$ A_\text{N} = n \cdot \sin \alpha $

Damit ist die numerische Apertur eine dimensionslose Größe, also ein rein numerischer Zahlenwert.

Auch bei Lichtwellenleitern wird die numerische Apertur durch den Sinus des Akzeptanzwinkels (manchmal auch Kollimations-/ Divergenzwinkel) der Faser beschrieben und entspricht der Öffnung des aus der Endfläche der Faser wieder austretenden kegelförmigen Lichtbündels.

Numerische Apertur beim Mikroskop: $ \alpha' $ in Luft und $ \alpha $ für ein Medium mit $ n>1 $

In Luft (zum Beispiel bei einem Fernrohr) mit $ n=1 $ ist die numerische Apertur immer kleiner als eins. Sie kann aber Werte größer als eins annehmen, wenn der Raum zwischen zu mikroskopierender Probe und Mikroskop-Objektiv mit einer Immersionsflüssigkeit gefüllt wird, deren Brechungsindex größer ist als eins. Häufig wird Wasser ($ n=1{,}33 $), Glycerin ($ n=1{,}47 $) oder Öl ($ n=1{,}51 $) benutzt. Dementsprechend beträgt die numerische Apertur für die besten Mikroskop-Objektive etwa 1,2 für Wasser oder 1,4 für Öl, da der maximal mögliche Akzeptanzwinkel bei zirka 70 Grad liegt.

Die maximale Auflösung ist der minimale Abstand zwischen zwei unterscheidbaren Strukturen $ d_{\rm min} $. In der Mikroskopie ist die Größe des Fokus durch Beugung begrenzt und proportional zur Wellenlänge $ \lambda $ des verwendeten Lichtes sowie umgekehrt proportional zur numerischen Apertur:

$ d_\text{min} = \frac {1{,}22 \cdot \lambda} {2 \cdot A_\text{N}} = \frac {0{,}61 \cdot \lambda} {A_\text{N}} $

Als Faustformel ergibt sich die folgende Beziehung zur Abschätzung der maximalen Auflösung:

$ d_\text{min} \approx \frac {\lambda} {A_\text{N}} $

Im Vakuum oder in Luft und großem Öffnungswinkel ($ n \approx 1 \rightarrow A_\text{N} \lesssim 1 $) ergibt sich als Abschätzung:

$ d_\text{min} \approx \lambda $

Die Auflösung kann über die Beugungsgrenze hinaus erhöht werden durch Ausnutzen nichtlinearer Reaktionen der Moleküle, beispielsweise bei den Analysemethoden STORM, dSTORM, STED oder (f)PALM.

Ein optisches Element, wie zum Beispiel ein Objektiv, wird durch seine Vergrößerung, seine numerische Apertur, den optischen Arbeitsabstand und den rückwärtigen Abbildungsabstand charakterisiert. Mathematisch richtig wird der Öffnungswinkel durch eine Blende in der hinteren Brennebene des Objektivs bestimmt, bautechnisch ist aber die Fassung der ersten Linse limitierend. Dieses ist näherungsweise auch richtig, wie im Rahmen der Fraunhofer-Beugung erläutert wird. Bemerkenswert dabei ist, dass das Objekt unter dem Mikroskop so klein ist, dass das meistens nur 1 mm entfernte Objektiv sich im Fernfeld befindet, da das Nahfeld sich nur über den Bereich einiger Wellenlängen erstreckt.

Anstelle der numerischen Apertur wird vor allem in der Fotografie häufig das Öffnungsverhältnis angegeben. Im Gegensatz zur numerischen Apertur bezieht sich das Öffnungsverhältnis jedoch auf den bildseitigen Öffnungswinkel (siehe Öffnungsverhältnis und Blendenzahl).

Bei optischen Abbildungen sind häufig andere Effekte wie zum Beispiel Aberrationen oder andere Abbildungsfehler so groß, dass das theoretisch mögliche Auflösungsvermögen nicht erreicht werden kann. Als Kompromiss wird hierbei häufig die kritische Blende eingestellt, bei der bei einem vorgegebenen Objektiv in der Praxis das größte Auflösungsvermögen erreicht werden kann.

Literatur

  • Ernst Leitz: Mikroskope. Verlag Leitz, 1897, Kapitel Numerische Apertur, S. 10.
  • Ernst Abbe: Die Lehre von der Bildentstehung im Mikroskop. bearbeitet von Otto Lummer und Fritz Reiche, Verlag Vieweg, 1910.
  • Rainer Danz: Numerische Apertur, Immersion und förderliche Vergrößerung (PDF; 397 kB). In: Innovation. 15, Carl Zeiss AG, 2005, S. 12–16.

Weblinks

  • Mikroskop. In: Physikalisches Praktikum. Technische Universität Dresden (PDF-Datei; 415 kB)

Einzelnachweise

  1. Eugene Hecht: Optik. 4. Auflage, Verlag Oldenbourg, 2005, ISBN 3-486-27359-0, Kapitel 5.7 Optische Systeme, S. 357.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.