Multiplizität

Multiplizität

Die Artikel Entartung (Quantenmechanik) und Multiplizität überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zusammenzuführen (→ Anleitung). Beteilige dich dazu an der betreffenden Redundanzdiskussion. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz und vergiss nicht, den betreffenden Eintrag auf der Redundanzdiskussionsseite mit {{Erledigt|1=~~~~}} zu markieren. biggerj1 (Diskussion) 19:02, 9. Sep. 2016 (CEST)

Unter Multiplizität oder Entartungsgrad versteht man in der Quantenmechanik die Anzahl der orthogonalen Zustände, die zu einer bestimmten Observablen einen bestimmten Eigenwert gemeinsam haben. Diese Zustände sind also entartete Eigenzustände zu dieser Observablen.

Ein Beispiel ist die Spinmultiplizität, die sich auf die Observable Gesamtspin einer Atomhülle bezieht. Im einfachsten Beispiel, dem Wasserstoffatom, kann das Elektron im Grundzustand einen von zwei orthogonalen Spinzuständen einnehmen. Ohne äußeres Magnetfeld haben die beiden Zustände denselben Eigenwert für die Energie und können also energetisch nicht unterschieden werden, d. h., sie bilden ein zweifach entartetes Energieniveau; die Multiplizität ist hier 2, das Niveau ist ein Dublett. In einem Magnetfeld spaltet das Niveau durch den Zeeman-Effekt in zwei Niveaus auf.

Ganz entsprechend heißt bei zwei Elektronen der Zustand mit Gesamtspin $ S=0 $ Singulett, denn er spaltet nicht auf, und der Zustand mit Gesamtspin $ S=1 $ Triplett, denn er spaltet im Magnetfeld 3fach auf.

Allgemein hat ein System mit Gesamtspin $ S $ die Spinmultiplizität $ 2S+1 $. Die $ 2S+1 $ unabhängigen Zustände (und alle ihre Linearkombinationen) haben in vielen Fällen dieselbe Energie, unterscheiden sich aber z. B. in der Orientierung des Spins bezüglich einer ausgezeichneten Achse. Dies wird durch die $ 2S+1 $ verschiedenen Eigenwerte $ m_{S} $ der z-Komponente des Spins ausgedrückt (siehe z. B. Richtungsquantelung in einem Magnetfeld):

$ m_{S}=\underbrace {-S,-S+1,\ldots ,S-1,S} _{2S+1\,{\text{Werte: Multiplizität}}}. $

Ein Energieniveau mit Spinmultiplizität $ 2S+1 $ kann sich bei Auftreten zusätzlicher Wechselwirkungen in maximal $ 2S+1 $ Niveaus aufspalten. In den Linienspektren von Atomen führt dies zu einer Feinstruktur.

Spin-Multipletts
Spinquantenzahl
$ S $
magn. QZ des Spins
$ m_{S} $
Multiplizität
$ 2S+1 $
Bezeichnung Typ
0 0 1 Singulett Skalarboson
1/2 −1/2, +1/2 2 Dublett Fermion
1 −1, 0, +1 3 Triplett Vektorboson
3/2 −3/2, −1/2, +1/2, +3/2 4 Quartett Fermion
2 −2, −1, 0, +1, +2 5 Quintett Tensorboson

Multiplizität von Atomen und Molekülen

Bei Systemen aus mehreren Elektronen und/oder Atomkernen wird zwischen der Spin-Multiplizität der Elektronen und der Spin-Multiplizität der Atomkerne unterschieden.

Multiplizität des Elektronenspins

Einelektronen-Systeme

Der Eigendrehimpuls eines Elektrons hat als Quantenzahl eines Elementarteilchens mit dem Spin $ \textstyle S={\frac {1}{2}} $ projiziert auf eine beliebige Raumrichtung zwei mögliche Einstellungen: parallel oder antiparallel. Es liegt demnach ein elektronischer Dublett-Zustand vor. Die Multiplizität des Einelektronen-Systems ist $ \textstyle 2S+1=2 $.

  • Beispiel: Das Elektron eines einzelnen Wasserstoff-Atoms H• (So könnte es auch als Beispiel für ein Radikal mit null gepaarten Elektronen in der Tabelle unten stehen.)

Mehrelektronen-Systeme

Bei Atomen (bzw. Ionen) mit mehreren Elektronen und bei Molekülen muss zunächst die Gesamtspin-Quantenzahl $ S $ des gesamten elektronischen Systems ermittelt werden. Für ein Atom mit $ i $ Elektronen ist $ S $ gegeben durch

$ S=\left|\sum _{i}m_{s_{i}}\right|, $

wobei $ m_{s_{i}} $ die Spinquantenzahl des i-ten Elektrons ist. Da die individuellen Spins gepaarter Elektronen aufgrund entgegengesetzter Ausrichtung nicht zum Gesamtspin beitragen, reicht es aus, die ungepaarten Elektronen zu zählen. Ihre individuellen Spin-Quantenzahlen $ s=+1/2 $ addieren sich zur Gesamtspin-Quantenzahl $ S=n_{\text{ungepaart}}/2. $

Als einfaches Beispiel kann das Heliumatom als 2-Elektronensystem dienen, dafür sind die Zustände $ S=0 $ als Singulett (Parahelium) und $ S=1 $ als Triplett (Orthohelium) möglich.

System Beispiel Elektronen im Grundzustand Gesamtspin-Quantenzahl
$ S $
Multiplizität
$ 2S+1 $
Grundzustand
gepaart ungepaart
die meisten Moleküle Wasserstoff-Molekül H-H alle
(hier 1x2)
0 0/2 = 0 2x0+1 = 1 Singulett
Radikale Stickstoffmonoxid •N=O bzw. N-O• hier 5x2 1 1/2 2x(1/2)+1 = 2 Dublett
Biradikale Sauerstoff-Molekül •O-O• hier 5x2 2 2/2 = 1 2x1+1 = 3 Triplett
Metallionen, vor allem der Nebengruppe,
und Komplexe
…x2 $ \geq 2 $ $ \geq 1 $ $ \geq 3 $ Triplett, Quartett, …

Der Zahlenwert der Multiplizität wird in den Termsymbolen links hochgestellt angegeben, die häufig zur Kennzeichnung der Quantenzustände von Atomen und Molekülen verwendet werden.

  • Beispiel: Für Wasserstoffatome (H) im Grundzustand ist das Termsymbol 2S1/2 (Multiplizität 2).

Bedeutung: Auswahlregeln, Interkombinationsverbot

Die Spinmultiplizität spielt eine wichtige Rolle für die Auswahlregeln in der Spektroskopie bei Mehrelektronensystemen. So erfolgen elektrische Übergänge besonders gut, wenn die Kopplung der Spins und damit die Multiplizität erhalten bleibt (erlaubter Übergang, z. B. Fluoreszenz aus dem ersten angeregten Singulett-Zustand in den Singulett-Grundzustand).

Dagegen gelten Prozesse, bei denen sich die Multiplizität ändert (Interkombination), nach dem in der Spektroskopie üblichen Sprachgebrauch als verboten (Interkombinationsverbot). Genauer ist damit ausgedrückt, dass sie meist nur in geringem Ausmaß bzw. „langsam“ (d. h. statistisch selten) stattfinden, wie z. B. in der Phosphoreszenz (Übergang aus dem tiefsten angeregten Triplett-Zustand in den Singulett-Grundzustand).

Multiplizität des Kernspins

Der Spin der Nukleonen und ihr Bahndrehimpuls ergeben den Gesamtspin $ I $ des Kerns. Dieser wird meist als Kernspin bezeichnet, obwohl auch die Bahndrehimpulse der Nukleonen beitragen.[1] Der Gesamtdrehimpuls des Atoms – auch als Atomspin bezeichnet – ergibt sich aus Kerndrehimpuls $ I $ und Hüllendrehimpuls $ J $ und kann die Werte $ I+J,I+J-1,\ldots ,\left|I-J\right| $ annehmen, sodass die Multiplizität $ 2I+1 $ für $ I\geq J $ und $ 2J+1 $ für $ J>I $ ist.

Literatur

  • Walter Greiner: Theoretische Physik: Quantenmechanik – Einführung. Harri Deutsch Verlag, 2005, ISBN 978-3-8171-1765-9 (eingeschränkte Vorschau in der Google-Buchsuche).
  • Hermann Haken, Hans Christoph Wolf: Atom- und Quantenphysik. Springer, 2003, ISBN 978-3-642-18519-9 (eingeschränkte Vorschau in der Google-Buchsuche).

Siehe auch

Einzelnachweise

  1. Theo Mayer-Kuckuk: Kernphysik: Eine Einführung. Springer-Verlag, 2013, ISBN 3-322-84876-0, S. 55 (eingeschränkte Vorschau in der Google-Buchsuche – Bei der Multiplizität ist ein Tippfehler: Es muss $ J>I $ anstelle von $ J<I $ heißen).