Mol

Dieser Artikel beschäftigt sich mit der Maßeinheit Mol; zu anderen Begriffen siehe Mol (Begriffsklärung).
Physikalische Einheit
Einheitenname Mol

Einheitenzeichen $ \mathrm{mol} $
Physikalische Größe(n) Stoffmenge
Formelzeichen $ n $
Dimension $ \mathsf{N} $
System Internationales Einheitensystem
In SI-Einheiten Basiseinheit
Benannt nach Molekül

Das Mol (Einheitenzeichen: mol) ist die SI-Basiseinheit der Stoffmenge. Sie dient der Mengenangabe bei chemischen Reaktionen.

Ein Mol enthält etwa 6,022 · 1023 Teilchen. Diese Zahl ist so definiert, dass 12 g Kohlenstoff mit dem Isotop C-12 genau einem Mol entsprechen. Der Zahlenwert der Masse eines Mols eines Stoffs angegeben in Gramm ist identisch mit der Atommasse der Atome oder der Molekülmasse der Moleküle, aus denen der Stoff besteht, angegeben in der Atomaren Masseneinheit (u).

Definition

Im SI-Einheitensystem ist das Mol eine Basiseinheit und so definiert:

Das Mol ist die Stoffmenge eines Systems, das aus ebenso vielen Einzelteilchen besteht, wie Atome in 12 Gramm des Nuklids Kohlenstoff-12 (12C) enthalten sind; sein Symbol ist „mol“.
Wenn das Mol benutzt wird, müssen die verwendeten Einzelteilchen angegeben werden; es kann sich dabei um Atome, Moleküle, Ionen, Elektronen, Photonen, sonstige Teilchen oder spezifizierte Gruppen solcher Teilchen handeln.[1]

Anders ausgedrückt: 12 Gramm Kohlenstoff-12 sind genau die Stoffmenge 1 Mol. Ein Mol Atome natürlichen Kohlenstoffs hingegen hat aufgrund des Isotopengemischs eine Masse von 12,0107 Gramm. Teilchenzahl und Stoffmenge sind einander direkt proportional, so dass eine beliebige dieser beiden Größen als Maß für die andere dienen kann.

Die Teilchenzahl pro ein Mol Stoffmenge (Avogadro-Konstante) hat den Wert:[2]

$ 6{,}022\;140\;857\;(74) \cdot 10^{23}\ \mathrm{mol}^{-1} $

wobei die eingeklammerten Ziffern die Unsicherheit in den letzten Stellen des Wertes bezeichnen, diese Unsicherheit ist als geschätzte Standardabweichung des ermittelten Zahlenwertes angegeben und beträgt somit $ 0{,}000\;000\;074 \cdot 10^{23}\ \mathrm{mol}^{-1} $.

Ein Mol eines Stoffes enthält also ca. 602 Trilliarden Teilchen dieses Stoffes.

Historisches

Der Begriff „Mol“ wurde 1893 von Wilhelm Ostwald geprägt und ist vermutlich von „Molekül“ abgeleitet. Im SI ist 1971 das Mol als Basiseinheit eingeführt worden. Damit wurde der Anwendungsbereich des SI auf die Chemie ausgedehnt. Vor Etablierung des SI ist das Mol überwiegend als Masseneinheit angesehen worden. Ältere Bezeichnungen sind Grammatom (nur bei Elementen) und Grammolekül (nur bei Verbindungen). So heißt es in DIN 1310 „Gehalt von Lösungen“ vom April 1927: „Als Masseneinheiten dienen […] das Mol, d. h. soviel Gramm des Stoffes, wie sein Molekulargewicht angibt […]“. Allerdings wurde durch die Anwendung des Molekular„gewichts“ hier eine Stoffmasse – keine Stoffmenge heutiger Sicht – beschrieben und als „Stoffmenge“ bezeichnet. In der heutigen Mol-Definition des SI hingegen wird die Stoffmenge von Teilchenzahl und Masse formal klar unterschieden.

Dezimale Vielfache

Gebräuchliche dezimale Teile und Vielfache des Mols sind:

Bezeichnung Einheit Faktor Vielfaches Anmerkung
Megamol Mmol 106-0 1000000 mol entspricht 1.000.000 Mol
Kilomol kmol 103-0 1000 mol entspricht 1000 Mol
Millimol mmol 10−3 0,001 mol entspricht einem Tausendstel Mol
Mikromol µmol 10−60 0,001 mmol entspricht einem Millionstel Mol (einem Tausendstel Millimol)
Nanomol nmol 10−90 0,001 µmol entspricht einem Milliardstel Mol (einem Millionstel Millimol)

Molares Volumen

Das molare Volumen eines Stoffes ist eine stoffspezifische Eigenschaft, die angibt, welches Volumen ein Mol eines Stoffes ausfüllt. Für ein ideales Gas gilt, dass ein Mol bei Normalbedingungen (273,15 K, 101325 Pa) ein Volumen von 22,414 Liter einnimmt. Für reale Gase, Feststoffe und Flüssigkeiten ist das molare Volumen dagegen stoffabhängig.

Molare Masse

Die molare Masse $ M $ ist der Quotient aus Masse und Stoffmenge eines Stoffs. In der Einheit g/mol hat sie denselben Zahlenwert wie die Atom- bzw. Molekülmasse des Stoffs in der Einheit $ u $ (atomare Masseneinheit). Ihre Bedeutung ist äquivalent zum früheren „Atomgewicht“ in der Chemie.

Berechnung von Stoffmengen

Zur Berechnung wird folgende Formel verwendet: $ n=\frac{m}{M} $

Dabei bezeichnet $ n $ die Stoffmenge, $ m $ die Masse und $ M $ die molare Masse. $ M $ kann für chemische Elemente Tabellenwerken entnommen und für chemische Verbindungen bekannter Zusammensetzung aus solchen Werten errechnet werden.

Die atomare Masse, die für jedes chemische Element in Tabellen angegeben wird, bezieht sich dabei auf das natürliche Isotopengemisch. So ist zum Beispiel als Atommasse für Kohlenstoff 12,0107 u angegeben. Dieser Wert ist zum Beispiel für in 13C angereichertes Material nicht anzuwenden. Während bei stabilen Elementen die Abweichungen von Isotopenmischungen, wie sie in der Natur vorkommen, relativ gering sind, kann insbesondere bei radioaktiven Elementen das Isotopengemisch stark von der Herkunft und dem Alter des Materials abhängen.

Verwendung der Einheit Mol bei Konzentrationsangaben

Die Einheit Mol findet häufig Verwendung in zusammengesetzten Einheiten zur Angabe von Konzentrationen (Salzgehalt von Lösungen, Säuregehalt von Lösungen usw.). Eine der häufigsten Verwendungen ist die x-molare Lösung (das x steht darin für eine beliebige rationale positive Zahl). Die Bedeutung ist

Beispiel:
Eine 2,5-molare A-Lösung enthält 2,5 mol des gelösten Stoffes A in 1 Liter der Lösung.
Siehe dazu auch: Stoffmengenkonzentration

Beispiele

Masse von 1 mol Helium

  • 1 Atom Helium hat eine Masse von ungefähr 4 u (u ist die atomare Masseneinheit; ein Helium-Atom hat 2 Protonen und 2 Neutronen). Helium-Gas ist einatomar, daher bezieht sich im folgenden Beispiel das Mol auf He-Atome, ohne dass es einer besonderen Erwähnung bedarf.
  • 1 mol Helium hat also eine Masse von etwa 4 g und enthält ungefähr 6,022·1023 Helium-Atome.

Masse von 1 mol Wasser

  • 1 mol eines Stoffes enthält ungefähr 6,022·1023 Teilchen.
  • 1 Wassermolekül H2O besteht aus 1 Sauerstoffatom und 2 Wasserstoffatomen.
  • Das Sauerstoffatom besitzt meistens 16 Nukleonen (Kernteilchen, also Neutronen und Protonen), ein Wasserstoffatom besitzt meistens 1 Kernteilchen (ein Proton).
  • Ein Wassermolekül enthält demnach meistens 18 Nukleonen.
  • Die Masse eines Kernteilchens ist ungefähr 1,6605·10−24 g.
  • 1 Wassermolekül hat somit meistens die Masse 18 · 1,6605·10−24 g.
  • Die Masse von 1 mol Wasser ist das 6,022·1023-fache der Masse eines Wassermoleküls.
  • Die Masse von 1 mol Wasser ist somit 6,022·1023 · 18 · 1,6605·10−24 g = 18 g (der Zahlenwert ist gleich der Molekülmasse in u).

Nimmt man statt der Zahl der Nukleonen die genaueren Atommassen, ergibt sich ein leicht höherer Wert von 18,015 g.

Herstellung von Lithiumhydroxid aus Lithium und Wasser

$ \mathrm{2 \, Li + 2 \, H_2O \rightarrow 1 \, H_2 + 2 \, LiOH} $

Bei der Bildung von LiOH werden zwei Wassermoleküle von zwei Lithiumatomen in jeweils einen H- und einen OH-Teil aufgespalten. Weil in jedem Mol von jeder Substanz gleich viele Teilchen vorhanden sind (siehe oben), braucht man beispielsweise 2 mol Lithium und 2 mol Wasser (oder eine beliebige andere Stoffmenge im 2:2-Verhältnis).

Beispielsweise reagieren 2-mal 6,94 g Lithium und 2-mal 18 g Wasser zu 2 g Wasserstoff und 47,88 g Lithiumhydroxid.

Einzelnachweise

  1. Übersetzt aus The International System of Units (SI brochure): 8th edition (PDF; 1,5 MB), 2006.
  2. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 1. August 2015. Wert für die Avogadro-Konstante.

Weblinks

  • Karl Rauscher, Reiner Friebe: Chemische Tabellen und Rechentafeln für die analytische Praxis. 11. Auflage. Verlag Harri Deutsch, Frankfurt am Main 2004, ISBN 3-8171-1621-7, S. 31 (eingeschränkte Vorschau in der Google-Buchsuche), zuletzt abgerufen Oktober 2012.

News Meldungen


2017-06-30
Astrophysik - Elektrodynamik - Quantenphysik - Teilchenphysik
Atom- und Molekülspektren im extremen Magnetfeld von Weißen Zwergen werden berechenbar
Neue quantenchemische Methode schafft Grundlagen zur Identifikation von Atomen und Molekülen im Magnetfeld von Weißen Zwergen
2017-06-30
Astrophysik - Teilchenphysik
Röntgenblitze erzeugen „molekulares Schwarzes Loch“
Mit einem ultraintensiven Röntgenblitz haben Forscher ein einzelnes Atom in einem Molekül kurzzeitig in eine Art elektromagnetisches ‚Schwarzes Loch‘ verwandelt.
2018-04-10
Festkörperphysik
Neue Methode für Einblicke in Wechselwirkungen zwischen Molekülen / Atomar definierte Mess-Spitze
Nanowissenschaftler der WWU zeigen nun in einer im Fachmagazin „Nature Nanotechnology“ veröffentlichten Studie, wie die Strukturen organischer Moleküle mit ungeahnter Genauigkeit sichtbar gemacht werden können. Die neue Methode basiert auf der Rasterkraftmikroskopie.
2018-04-17
Teilchenphysik
Auf der Suche nach unsichtbaren Molekülen
Nachhaltige Chemie ist das Forschungsziel von Nuno Maulide und seiner Arbeitsgruppe an der Fakultät für Chemie der Universität Wien.
2018-04-17
Teilchenphysik
Wie schwingt ein Molekül, wenn es berührt wird
Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes
2018-04-23
Elektrodynamik - Quantenoptik
Moleküle brillant beleuchtet
Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert.
2018-05-23
Astrophysik - Quantenphysik
Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
Die Quantentheorie bildet die Grundlage der modernen Physik.
2018-05-24
Elektrodynamik - Festkörperphysik
Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln
Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten.
2018-06-25
Festkörperphysik
Brücken bauen mit Wassermolekülen
Wassermoleküle können komplizierte brückenartige Strukturen bilden, wenn sie sich an Oberflächen anlagern. Vermutet hatte man das bereits, einem Team der TU Wien gelang nun der Beweis.
2018-06-28
Astrophysik - Biophysik
Komplexe organische Moleküle auf dem Saturnmond Enceladus
Der Saturnmond Enceladus verbirgt unter seiner Eiskruste einen globalen Ozean aus flüssigem Wasser.
2018-07-30
Astrophysik - Teilchenphysik
26AlF – die erste Entdeckung eines radioaktiven Moleküls im Weltraum
Der erste eindeutige Nachweis eines radioaktiven Moleküls, 26AlF, im Weltraum, ist in der direkten Umgebung des historischen Nova-ähnlichen Objekts CK Vul gelungen, bei dem es sich höchstwahrscheinlich um den Überrest der Kollision zweier Sterne handelt.
2018-08-29
Astrophysik - Teilchenphysik
Erstmals radioaktives Molekül im All lokalisiert
Erstmalig hat ein internationales Forschungsteam ein radioaktives Molekül im All lokalisiert. Die Methodik kann künftig genutzt werden, um Stern-Explosionen aufzuspüren. Die entscheidenden Labordaten lieferten zwei Physiker der Universität Kassel.
2018-10-04
Festkörperphysik
Molekulare Multiwerkzeuge
Die Funktionalisierung von Oberflächen mit verschiedenen physikalischen oder chemischen Eigenschaften ist eine Anforderung in vielen Anwendungsgebieten.
2018-10-04
Astrophysik
Neue Messungen fordern kosmologische Theorien heraus
Neue Messungen stellen die Astrophysik vor ein Rätsel: Demnach haben sich in der Zeit seit dem Urknall deutlich weniger Galaxienhaufen gebildet, als eigentlich zu erwarten wäre.
2018-11-14
Teilchenphysik
Die Umgebung macht das Molekül zum Schalter
Erstmals haben Physiker der Universität Würzburg ein organisches Molekül so positioniert, dass dieses zwei unterschiedliche Zustände annehmen kann. Damit eignet es sich möglicherweise zum Einsatz in der molekularen Spintronik.
2018-11-26
Festkörperphysik
Selbstorganisierte, molekulare Monolagen für effiziente Perowskit-Solarzellen
Ein Team am HZB hat ein neues Verfahren entdeckt, um effiziente Kontaktschichten in Perowskit-Solarzellen zu realisieren: Es basiert auf Molekülen, die sich selbstorganisierend anordnen und eine Monolage bilden.
2018-12-17
Teilchenphysik
Datenspeicherung mit einzelnen Molekülen
Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt.
2018-12-21
Teilchenphysik
Beschreibung rotierender Moleküle leicht gemacht
Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in Flüssigkeiten.
2018-12-21
Quantenoptik
Moleküle aus mehreren Blickwinkeln
Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionsspektroskopie im sog.
2019-01-17
Elektrodynamik - Quantenoptik
Wie Moleküle im Laserfeld wippen
Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger Dipol induziert.
2019-03-06

Organische Bauelemente für Quantennetzwerke – Wenn ein Molekül Photonen sortiert
Physikern des Max-Planck-Instituts für die Physik des Lichts (MPL) in Erlangen ist es gelungen, ein organisches Molekül in ein fast perfektes Quantensystem mit nur zwei wohldefinierten Energieniveaus zu verwandeln.
2019-03-28

Die Datenspeicher von morgen: Mit neuer Technik molekulare Magnete wie in Zeitlupe erforschen
Beim Speichern von Daten stoßen herkömmliche Techniken zunehmend an ihre Grenzen.
2019-05-24

Direkte Abbildung von Riesenmolekülen
Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.
2019-07-18

Chemie des kosmologischen Dunklen Zeitalters im Labor untersucht
Neue Messungen ergeben eine dramatisch höhere Häufigkeit von Heliumhydrid-Ionen im frühen Universum.
2019-09-03

Ein Lineal für Moleküle: Göttinger Forscher entwickeln Verfahren mit verbesserter Auflösung
Forscherinnen und Forscher der Universität Göttingen haben ein neues Verfahren entwickelt, das die speziellen Eigenschaften von Graphen nutzt, um mit fluoreszierenden (lichtemittierenden) Molekülen elektromagnetisch zu interagieren.
2019-09-23

Wie molekulare Fußbälle im Röntgenlaser zerplatzen
Ein internationales Forschungsteam hat in Echtzeit verfolgt, wie Fußballmoleküle aus Kohlenstoff im Strahl eines Röntgenlasers zerplatzen.
2019-10-10

Molekülarchitekturen aus Atomen modelliert – neuer Vorschlag zur analogen Simulation von Quantenchemie
Ein globales Team an Wissenschaftlern entwickelt die erste Blaupause zur exakten Berechnung molekularer Chemie mittels eines analogen Quantensimulators.Neue Wirkstoffe suchen, neue Verfahren in der chemischen Industrie entwickeln: Computersimulation von Molekülen oder Reaktionen sollen derlei beschleunigen.
2019-10-21

Wie ein Molekül das Klima verändern kann
Wolken entstehen aus Wassertröpfchen, die sich um Aerosolpartikel in der Atmosphäre bilden.
2019-10-28

Und es ward…ein neuartiges Licht:Lichtwellen mit intrinsischer Chiralität halten Spiegelmoleküle zuverlässig auseinander
Licht bietet den schnellsten Weg, um rechts- und linkshändige chirale Moleküle zu unterscheiden, was für viele Anwendungen in Chemie und Biologie unerlässlich ist.
2019-12-23

Rechnen mit Molekülen: Großer Schritt in Richtung einer neuen Computerarchitektur
Internationales Forschungsteam unter Kieler Leitung baut stabile schaltbare Moleküle für die Spintronik.
2020-03-19
Festkörperphysik
Wie Moleküle sich selbst organisieren
Kieler Forschende kontrollieren die Größe von Molekül-Superstrukturen auf Oberflächen.
2020-03-23
Quantenoptik
Forschende beobachten erstmals ultraschnelle Prozesse einzelner Moleküle in flüssigem Helium
In Physical Review Letters beschreiben Experimentalphysiker der TU Graz, wie sich ein Molekül in der schützenden Umgebung einer Quantenflüssigkeit bewegt.
2020-05-27
Kernphysik
Radioaktive Moleküle eignen sich als Mini-Labore
Radioaktive Moleküle eignen sich als Miniatur-Laboratorien, mit denen sich grundlegende Eigenschaften von Elementarteilchen und Atomkernen studieren lassen – das ist das Ergebnis eines Experiments, über das ein internationales Forschungskonsortium in der aktuellen Ausgabe des Wissenschaftsmagazins „Nature“ berichtet.
2020-07-01
Festkörperphysik
3D-Druck auf den Mond bringen – unter Mondbedingungen geschmolzen
Die Kugeln wirken unscheinbar – doch sind sie weltweit einzigartig.

Das könnte dich auch interessieren