Moderator (Physik)

Moderator (Physik)

Ein Moderator (lat. moderare ‚mäßigen‘) dient dazu, freie Neutronen, die bei ihrer Freisetzung meist relativ energiereich, also schnell sind, abzubremsen. Die Abbremsung erfolgt dabei durch wiederholte elastische Streuung an leichten Atomkernen, also solchen von Nukliden niedriger Massenzahl (siehe auch Elastischer Stoß). Die vom Neutron abgegebene Energie wird als Rückstoß vom getroffenen Atomkern aufgenommen; dieser gibt sie in weiteren Stößen als Wärme an die umgebende Materie ab.

Das Wort Moderator kann das dazu verwendete Material oder auch ein fertiges Bauteil usw. bezeichnen.

Diese „Moderation“ ist begrifflich zu unterscheiden von der Verlangsamung der Neutronen durch unelastische Streuung an mittelschweren Materialien wie z. B. Eisen (manchmal „Degradation“ genannt). Diese wird für Neutronen mit Energien im MeV-Bereich z. B. in Abschirmungen häufig eingesetzt, oft kombiniert mit nachfolgender Moderation. Bei der unelastischen Streuung geht die vom Neutron abgegebene Energie hauptsächlich in Anregungsenergie des Atomkerns über; der Kern gibt sie anschließend als Gammastrahlung wieder ab.

Materialien

Die durchschnittliche Bremswirkung eines elastischen Stoßes ist am stärksten bei gleich großen Massen der Stoßpartner. Bei zentralem Stoß würde dann ein einziger Zusammenstoß ausreichen, um das Neutron zum Stillstand zu bringen (siehe Kinematik (Teilchenprozesse)). Deshalb ist Wasserstoff, besonders sein häufigstes Isotop 1H, dessen Kern ein einzelnes Proton ist, in dieser Hinsicht der wirksamste Moderator. Vorteilhaft ist, dass Wasserstoff in vielen Materialien (wie Wasser, Paraffin, vielen Kunststoffen) rund 2/3 aller Atome darstellt. Verwendbar sind auch Deuterium als Bestandteil des schweren Wassers, Beryllium und Kohlenstoff. Helium ist als stets gasförmiger Stoff praktisch wenig geeignet. Zahlenmäßig wird der Vorteil leichter Elemente als Moderator durch das mittlere logarithmische Energiedekrement ausgedrückt.

Die folgende Tabelle gibt Auskunft über die durchschnittliche Anzahl der Stöße, die notwendig ist, um ein durch Kernspaltung freigesetztes Neutron (typische Energie etwa 2 MeV) auf thermische Energie abzubremsen.[1]

Wasserstoff Deuterium Beryllium Kohlenstoff Sauerstoff Uran
Masse des Kerns in u 1 2 9 12 16 238
Energiedekrement $ \xi $ 1 0,7261 0,2078 0,1589 0,1209 0,0084
Anzahl der Stöße 18 25 86 114 150 2172

Moderationsfähigkeit

Zum Vergleich verschiedener Moderatoren lässt sich die Moderationsfähigkeit (englisch moderation ratio) verwenden. Sie berechnet sich aus dem mittleren logarithmischen Energiedekrement $ \xi = \ln\frac{E_0}{E_n} $ und dem Quotienten der Wirkungsquerschnitte für elastische Neutronenstreuung (σel) und Neutroneneinfang (σγ).[2]

$ \text{Moderationsfähigkeit} = \xi \frac{\sigma_{el}}{\sigma_\gamma} $

Für thermische Neutronen (0,0253 eV) gilt:
Moderator ξ σel σγ σel / σγ Moderationsfähigkeit
Leichtwasser 0,920 25,47 0,33 77,17 71
Schweres Wasser 0,509 5,57 0,0005 11139,49 5670
Graphit 0,128 5,25 0,0035 1500 192

Die Moderationsfähigkeit von Leichtwasser ist trotz des hohen Energiedekrements wegen des großen Einfangquerschnitts niedrig.[2]

Anwendungen

Kernreaktoren

Das wichtigste Einsatzgebiet von Moderatoren sind Kernreaktoren, in denen die bei der Kernspaltung von Uran-235 oder Plutonium-239 entstehenden schnellen Neutronen auf thermische Energie abgebremst werden. Schnelle Neutronen rufen nur selten eine Kernspaltung hervor; ein thermisches Neutron dagegen löst mit viel höherer Wahrscheinlichkeit (Wirkungsquerschnitt) eine neue Kernspaltung aus. Ein moderierter Reaktor benötigt deshalb für die selbsterhaltende Spaltungskettenreaktion eine sehr viel geringere Menge an Kernbrennstoff (siehe auch Kritische Masse) als ein „schneller“, ohne Moderator arbeitender Reaktor. In Kernkraftwerken technisch genutzt werden Wasserstoff (als leichtes (gewöhnliches) Wasser), Deuterium (als schweres Wasser) und Kohlenstoff in Form von Graphit.

In Leichtwasserreaktoren wird gewöhnliches Wasser als Moderator verwendet. Ein Nachteil ist die Absorption von Neutronen durch das Wasser. Dieser Neutronenverlust wird ausgeglichen, indem angereichertes Uran (235U) verwendet und die Uranmenge vergrößert wird. Für Leichtwasserreaktoren spricht, dass leichtes Wasser preiswert und nicht brennbar ist und im Fall einer Überhitzung des Reaktors (Reaktorunfall) verdampft. Dann ist keine Moderation mehr vorhanden und die Kettenreaktion erlischt.

Reiner Graphit ist relativ leicht herzustellen und zeigt sehr geringe Neutronenabsorption. Ein graphitmoderierter Kernreaktor kann daher mit nicht-angereichertem Uran (Natururan) betrieben werden. Der erste 1942 unter Leitung von Enrico Fermi in Chicago gebaute und funktionsfähige Versuchsreaktor war so konstruiert. Graphitmoderierte Leistungsreaktoren sind die britischen Magnox-Reaktoren, ebenso die später in der Sowjetunion entwickelten RBMK-Reaktoren, die heute nur noch in Russland in Betrieb sind. Beim Reaktorunfall von Tschernobyl im Jahre 1986 konnte die Kettenreaktion des überhitzten RBMK-Reaktors nicht mehr unterbrochen werden; der Graphit behielt seine moderierenden Eigenschaften, und somit wurde die Leistungserzeugung bis zur Kernschmelze aufrechterhalten. Der größte Schaden entstand aber, weil der Graphit (reiner Kohlenstoff) brannte und die heißen Rauchgase die radioaktiven Partikel mit in große Höhen transportierten. Ein weiterer graphitmoderierter Leistungsreaktortyp ist der gasgekühlte Hochtemperaturreaktor.

Reaktoreigenschaften bei verschiedenen Moderatoren

Die Wahl des Moderators hat Auswirkungen auf die Eigenschaften des Reaktors:

  • Schweres Wasser hat lediglich eine geringe Tendenz (kleinen Wirkungsquerschnitt) für Neutroneneinfang. Daher können mit schwerem Wasser moderierte Reaktoren mit Natururan betrieben und vergleichsweise klein gebaut werden, weshalb sie in mobilen Anwendungen wie Atom-U-Booten bevorzugt eingesetzt werden.
  • Leichtes Wasser absorbiert durch die Neutroneneinfangsreaktion 1H(n,$ \gamma $)2H Neutronen. Um dies auszugleichen, müssen diese Reaktoren mit angereichertem Uran betrieben werden und deutlich mehr Volumen besitzen.
  • Graphit, also Kohlenstoff, absorbiert zwar nur geringfügig, bremst die Neutronen aber erst nach sehr vielen Stößen (siehe Tabelle oben) auf die notwendige niedrige Geschwindigkeit. Deshalb sind die Kerne graphitmoderierter Reaktoren deutlich größer als die von Leichtwasserreaktoren.
Zwei Techniker auf dem Kern eines der graphitmoderierten Reaktoren (Typ RBMK-1500) im Kernkraftwerk Ignalina

Brutreaktoren enthalten keinen Moderator, weil bei ihnen die Spaltung durch schnelle Neutronen erwünscht ist. Das hier zur Kühlung verwendete Natrium (mit seiner Massenzahl 23) hat einen sehr viel geringeren moderierenden Effekt als Wasser.

Andere Anwendungen

Moderatoren werden auch in Abschirmungen gegen Neutronen verwendet, oft in Mischung mit einem Absorber für thermische Neutronen wie Bor oder einer Lithiumverbindung.

In Verbindung mit einer Neutronenquelle wird ein Moderator benutzt, wenn ein Neutronenspektrum mit großem thermischem Anteil bereitgestellt werden soll, beispielsweise für Neutronenaktivierungsmessungen.

In vielen Neutronendetektoren werden die Neutronen durch einen Moderator auf thermische Energie gebracht, um dann zu ihrem Nachweis eine Absorptionsreaktion wie etwa 10B(n,alpha) zu nutzen. Ein Beispiel ist der Long Counter.

In allen diesen Fällen wird als Moderator meist Wasserstoff benutzt, oft in Form von festem Paraffin oder von Kunststoffen.

Siehe auch

  • Dampfblasenkoeffizient

Einzelnachweise

  1. D. Emendörfer, K. H. Höcker: Theorie der Kernreaktoren. Band 1: Der stationäre Reaktor. Bibliographisches Institut, Zürich 1982, ISBN 3-411-01599-3.
  2. 2,0 2,1 K.S. Rajan: Vorlesung Moderator and Moderator System (PDF).

Diese Artikel könnten dir auch gefallen



Die letzten News


25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.
02.02.2021
Entwicklung einer rekordverdächtigen Quelle für Einzelphotonen
Forschende der Universität Basel und der Ruhr-Universität Bochum haben eine Quelle für einzelne Photonen entwickelt, die Milliarden dieser Quantenteilchen pro Sekunde produzieren kann.
02.02.2021
Mit Künstlicher Intelligenz warme dichte Materie verstehen
Die Erforschung warmer dichter Materie liefert Einblicke in das Innere von Riesenplaneten, braunen Zwergen und Neutronensternen.
01.02.2021
Durch die fünfte Dimension zur Dunklen Materie
Eine Entdeckung in der theoretischen Physik könnte helfen, das Rätsel der Dunklen Materie zu lösen.
28.01.2021
KI für die Raumfahrt
Ob der eigenwillige HAL 9000 bei Odyssee im Weltraum, der dezent agierende „Computer“ der Enterprise oder die nüchtern-sarkastischen TARS und CASE in Interstellar – in der Science-Fiction wird die Exploration des Weltraums seit jeher von Künstlicher Intelligenz begleitet.