Minkowski-Raum

Minkowski-Raum

Der Minkowski-Raum, benannt nach Hermann Minkowski, ist ein vierdimensionaler Raum, in dem sich die Relativitätstheorie elegant formulieren lässt. Um 1907 erkannte Minkowski, dass die Arbeiten von Hendrik Antoon Lorentz (1904) und Albert Einstein (1905) zur Relativitätstheorie in einem nicht-euklidischen Raum verstanden werden können. Er vermutete, dass Raum und Zeit in einem vierdimensionalen Raum-Zeit-Kontinuum miteinander verbunden sind. Dies wird auch als Minkowski-Welt bezeichnet.

Drei seiner Koordinaten sind die des Euklidischen Raums; dazu kommt eine vierte Koordinate für die Zeit. Der Minkowski-Raum $ \mathbb M^4 $ ist also analog wie ein euklidischer Raum $ \mathbb R^4 $ aufgebaut. Wegen der unterschiedlichen Struktur von Raum- und Zeitkoordinaten (siehe unten) sind beide Räume aber wesentlich verschieden.

In der Mathematik betrachtet man auch Minkowski-Räume beliebiger Dimension.

Reelle Definition

Der Minkowski-Raum ist ein vierdimensionaler reeller Vektorraum, auf dem das Skalarprodukt nicht durch den üblichen Ausdruck, sondern durch eine nichtausgeartete Bilinearform vom Index 1 gegeben ist. Diese ist also nicht positiv definit. Man ordnet den Minkowski-Vierervektoren (sog. „Ereignissen“) vier-komponentige Elemente $ \mathbf x $ bzw. $ \mathbf y $ zu und setzt in der Regel

$ \mathbf{x\cdot y} := - x_0 y_0 + x_1 y_1 + x_2 y_2 + x_3 y_3, $

wobei die Koordinate $ x_0 = ct $ ebenfalls reell definiert ist: sie geht mit Hilfe der Lichtgeschwindigkeit $ c $ aus der Zeitkoordinate $ t $ hervor.

Statt der hier gewählten Signatur $ {(-,+,+,+)}, $ die in der allgemeinen Relativitätstheorie heute am häufigsten verwendet wird (sie ist die Konvention im einflussreichen Lehrbuch von Charles Misner, Kip Thorne und John Archibald Wheeler von 1973 und ), wird – vor allem in der neueren Literatur – oft die physikalisch äquivalente umgekehrte Signatur $ {(+,-,-,-)} $ gewählt. Letztere ist auch in der Teilchenphysik weit verbreitet[1] und wird zum Beispiel in der bekannten Lehrbuchreihe von Landau und Lifschitz verwendet. $ {(+,-,-,-)} $ wird im Englischen daher auch Teilchenphysik-Konvention genannt (auch Westküsten-Konvention), und $ {(-,+,+,+)}, $ die Relativitätstheorie-Konvention[2] (auch Ostküsten-Konvention). Die Zeit wird zuweilen auch als vierte statt als nullte Koordinate geführt.

Alternativ kann man das innere Produkt zweier Elemente des Minkowski-Raumes auch als Wirkung des metrischen Tensors $ \eta_{\mu\nu} $ auffassen:

$ \mathbf{x \cdot y} := \eta_{\mu\nu}x^\mu y^\nu\,, $

indem man kontravariante und kovariante Vektorkomponenten unterscheidet (obere bzw. untere Indizes, z. B. $ x^0 = +ct \, , $ aber $ x_0 = \eta_{0\nu} \, x^\nu = -ct \, , $ $ \eta_{\mu \nu} = {\rm diag} (-1,+1,+1,+1)\, $).

Definition mit imaginärer Zeit

In manchen älteren Lehrbüchern[3] wird eine äquivalente Notation verwendet, die die gemischte Signatur des inneren Produkts durch Verwendung einer imaginären Zeitachse vermeidet. Durch Setzen von $ x_0 = \mathrm i ct, x_1 = x, x_2 = y, x_3 = z $ können die $ x_i $ mit positiv definiter, euklidischer Metrik verwendet werden und man erhält dennoch die korrekte Minkowski-Signatur

$ x_0^2 + x_1^2 + x_2^2 + x_3^2 = -c^2t^2 + x^2 + y^2 + z^2\ . $

Eine Eigenschaft dieser Konvention ist, dass nicht zwischen kontravarianten und kovarianten Komponenten unterscheiden wird. Der Wechsel von Minkowski-Signatur auf euklidische Signatur der Metrik wird dabei als Wick-Rotation bezeichnet. In modernen Lehrbüchern wird diese Konvention nicht verwendet und von der Verwendung abgeraten.[4]

Lorentz-Transformationen

Hauptartikel: Lorentz-Transformation

Die Lorentz-Transformationen spielen eine den Drehungen um den Koordinatenursprung in euklidischen Räumen analoge Rolle: Es sind diejenigen homogen-linearen Transformationen, die das Objekt $ \eta_{\mu\nu} $ und damit das innere Produkt des Minkowskiraums invariant lassen, was die Bedeutung des Minkowskiraums in der speziellen Relativitätstheorie begründet. Auch eignet sich dieser Formalismus zur Verallgemeinerung in der allgemeinen Relativitätstheorie. Im Gegensatz zu den Drehgruppen haben die Lorentz-Transformationen auch die Kausalstruktur der Systeme als Folge.

Kausalstruktur (raumartige, zeitartige und lichtartige Vektoren)

Die Elemente des Minkowski-Raums können nach dem Vorzeichen von $ y^2 $ in drei Klassen eingeteilt werden:

  • zeitartige Minkowski-Vektoren (das entspricht kausal durch „massive Körper“ beeinflussbaren „Ereignispaaren“[5]),
  • raumartige Minkowski-Vektoren (kausal nicht beeinflussbare Ereignispaare)
  • – als Grenzfall – lichtartige Minkowski-Vektoren (kausal nur durch Lichtsignale beeinflussbare Ereignispaare).

Die Invarianz dieser Einteilung bei allen Lorentz-Transformationen folgt aus der Invarianz des Lichtkegels. Dabei beschreibt das zeitartige Innere des Lichtkegels die kausale Struktur: mögliche Ursachen eines Ereignisses liegen in der „Vergangenheit“ (Rückwärtsbereich des Lichtkegel-Inneren), mögliche Auswirkungen in der „Zukunft“ (Vorwärtsbereich des Lichtkegel-Inneren); außerdem gibt es noch den raumartigen Außenbereich des Lichtkegels, der mit dem betrachteten Ereignis im Zentrum gar nicht „kausal zusammenhängt“, weil dazu Informationsübertragung mit Überlichtgeschwindigkeit nötig wäre.

Minkowski-Räume in der Mathematik

In der Mathematik, speziell der Differentialgeometrie betrachtet man auch Minkowski-Räume $ \R^{1,n} $ beliebiger Dimension. Diese sind $ (n+1) $-dimensionale Vektorräume mit einer symmetrischen Bilinearform $ b $ der Signatur $ (1,n) $. In einer geeigneten Basis lässt sich $ b $ als

$ b(x,y)=-x_0y_0+x_1y_1+\ldots+x_ny_n $,

darstellen, diese Form bezeichnet man als Lorentzform.

Siehe auch

Literatur

  • Francesco Catoni: The mathematics of Minkowski space-time. Birkhäuser, Basel 2008, ISBN 978-3-7643-8613-9.
  • John W. Schutz: Independent axioms for Minkowski space-time. Longman, Harlow 1997, ISBN 0-582-31760-6.

Weblinks

 Wikibooks: Spezielle Relativitätstheorie – Lern- und Lehrmaterialien

Einzelnachweise und Fußnoten

  1. So in den bekannten Lehrbüchern von Michael Peskin und Daniel Schroeder, An introduction to quantum field theory, 1995, und fast allen Teilchenlehrbüchern seit den klassischen Lehrbüchern von James Bjorken und Sidney Drell Relativistic Quantum Mechanics, 1964.
  2. Sie wurde unter anderem von Wolfgang Pauli in seinem einflussreichen Artikel über Relativitätstheorie in der Enzyklopädie der mathematischen Wissenschaften verwendet. Einstein verwendete verschiedene Konventionen in seinem Aufsatz über Allgemeine Relativitätstheorie von 1916 die Konvention (+,-,-,-) und ebenso Hermann Minkowski 1908 in seinem Vortrag Raum und Zeit.
  3. Siehe etwa das Lehrbuch der Theoretischen Physik von Friedrich Hund, Band II.
  4. Charles W. Misner, Kip S. Thorne und John A. Wheeler: Gravitation. Freeman, San Francisco 1973, ISBN 0-7167-0334-3.
  5. Dass es sich um Ereignispaare handelt, wird klar, wenn man als $ \,\mathbf y^2 $ infinitesimale Differenzen $ \,\mathrm d\mathbf {y}^2 $ verwendet.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.