Meißner-Ochsenfeld-Effekt

Meißner-Ochsenfeld-Effekt

Unter dem Meißner-Ochsenfeld-Effekt versteht man die Eigenschaft von Supraleitern, in der Meißner-Phase (Supraleiter 1. Art) ein von außen angelegtes magnetisches Feld vollständig aus ihrem Inneren zu verdrängen. Der Supraleiter zeigt sich also nicht nur als idealer Leiter, sondern darüber hinaus auch als idealer Diamagnet. Dieser Effekt wurde 1933 von Walther Meißner und Robert Ochsenfeld entdeckt und ist durch klassische Physik nicht erklärbar. Die makroskopisch theoretische Erklärung des Meißner-Ochsenfeld-Effekts liefern die London-Gleichungen.[1]

Ein Magnet schwebt über einem mit flüssigem Stickstoff gekühlten Hochtemperatursupraleiter (ca. −200 °C).

Grundlagen

Verdrängung des äußeren magnetischen Feldes durch einen Supraleiter.

Datei:Flyingsuperconductor.ogv Der Meißner-Ochsenfeld-Effekt ist eine für Supraleiter sehr charakteristische Eigenschaft. Das externe Magnetfeld dringt etwa 100 nm weit in das Material ein, tiefere Schichten sind feldfrei. Dieses „Herausdrängen“ des Magnetfeldes ist unabhängig davon, ob die Probe bereits vor dem Einschalten des Magnetfeldes supraleitend war oder erst supraleitend gemacht wird, nachdem das Magnetfeld eingeschaltet wurde (siehe Abschnitt Unterschied zum idealen Leiter).

Gabriel Lippmann hat bereits im klassischen Elektromagnetismus nachgewiesen, dass der magnetische Fluss durch einen idealen Leiter konstant ist, was erklärt, dass wenn vor dem Erzeugen des Zustands idealer Leitung kein Magnetfeld im Leiter war, dieser im Zustand idealer Leitung immer noch magnetfeldfrei sein muss.[2] Das „Herausdrängen“ des Magnetfeldes wenn das Material supraleitend wird, wird klassisch nicht erklärt.

Der supraleitende Zustand wird oft über den Meißner-Ochsenfeld-Effekt nachgewiesen und nicht über das Verschwinden des elektrischen Widerstands. Bemerkenswert ist zudem, dass der Effekt nicht von der Vorgeschichte des Materials abhängt, er ist damit in der Sprache der Thermodynamik reversibel. Meißner und Ochsenfeld wiesen so indirekt nach, dass der supraleitende Zustand ein echter thermodynamischer Zustand ist.

Alle Supraleiter zeigen einen vollständigen Meißner-Ochsenfeld-Effekt, solange die Temperatur die kritische Temperatur $ T_\mathrm{c} $ nicht überschreitet und das von außen angelegte Magnetfeld unterhalb einer kritischen Feldstärke $ H_\mathrm{c} $ bleibt. Wegen der vollständigen Feldverdrängung spricht man auch von perfekten Diamagneten. Supraleiter zweiter Art zeigen oberhalb einer kritischen Feldstärke $ H_\mathrm{c1} $ nur noch einen unvollständigen Meißner-Ochsenfeld-Effekt: in dieser sogenannten Schubnikow-Phase durchdringt das Magnetfeld den Supraleiter innerhalb dünner Röhren, sogenannter Flussschläuche, die sich in einem gleichseitigen Dreiecksgitter anordnen. In dieser Phase ist der Supraleiter kein perfekter Diamagnet mehr; supraleitend ist er aber nach wie vor.

Bei nicht zu dünnen Werkstücken hängt der Meißner-Ochsenfeld-Effekt von der Reinheit und von der Homogenität des Supraleiters ab. Ein vollständiger Meißner-Ochsenfeld-Effekt kommt nur zustande, wenn die gesamte Probe supraleitend geworden ist. Ansonsten können sich Mischungszustände aus normal- und supraleitenden Bereichen bilden. Der Meißner-Ochsenfeld-Effekt eignet sich somit dafür, die Qualität eines Supraleiters zu beurteilen. Der elektrische Widerstand wird dagegen praktisch bereits Null, sobald die kritische Temperatur $ T_\mathrm{c} $ unterschritten wird.

Vereinfachte Erklärung

Eine wesentlich vereinfachte Erklärung geht wie folgt:

Die Grenzfläche sei durch die Ebene x = 0 approximiert. Links von der Grenzfläche, d. h. für x < 0, befinde sich normalleitendes Material und ein homogenes, vertikales Magnetfeld Bz. Rechts von der Grenzfläche. d. h. für x > 0, sei das Material supraleitend. Dann fließen entlang der Grenzfläche, in einer sehr dünnen Oberflächenschicht der Breite λ („Eindringtiefe“), deren genaue Ausdehnung ebenfalls berechnet werden kann, von vorn nach hinten gerichtete Supraströme jy. Diese erzeugen nach der „Rechte-Hand-Regel“ ein vertikal nach unten gerichtetes Magnetfeld, welches das vertikal nach oben gerichtete externe Magnetfeld Bz zwecks Minimierung der Feldenergie genau kompensiert.

Im Supraleiter ist also - abgesehen von der erwähnten Oberflächenschicht der Breite λ - überall B = 0.

Unterschied zum idealen Leiter

Senkt man ein Plättchen eines idealen Leiters (eines Materials ohne elektrischen Widerstand) auf einen Dauermagneten ab, so werden im Plättchen gemäß der Lenzschen Regel Ströme induziert, die dem Magnetfeld entgegenwirken und dadurch das Plättchen über dem Magneten schweben lassen. Da es keinen Widerstand gibt, werden die Ströme nicht abgeschwächt und das Plättchen schwebt dauerhaft. Bei einem Supraleiter verschwindet unterhalb der kritischen Temperatur sein elektrischer Widerstand und er wird zum idealen Leiter. Deshalb schwebt ein Supraleiter-Plättchen über einem Magneten, wenn es vorher unter seine kritische Temperatur abgekühlt wurde.

Doch die Eigenschaften eines Supraleiters gehen über die eines idealen Leiters hinaus. Das kann gezeigt werden, indem man die Reihenfolge des Experiments umkehrt: Legt man das (warme) Supraleiter-Plättchen auf den Magneten und kühlt es erst anschließend ab, so beginnt es unterhalb der kritischen Temperatur zu schweben. Bei einem klassischen idealen Leiter würde nichts passieren, das heißt dieser sogenannte Meißner-Ochsenfeld-Effekt ist eine spezielle Eigenschaft von Supraleitern. Erklärt werden kann der Effekt dadurch, dass sich beim Phasenübergang in den supraleitenden Zustand Abschirmströme ausbilden, die das Magnetfeld aus dem Inneren des Supraleiters verdrängen.

Anwendungen

Der Meißner-Ochsenfeld-Effekt wird zum Beispiel in supraleitenden Magnetlagern oder in supraleitenden Schaltern, sogenannten Kryotronen genutzt.

Die Erklärung des Meißner-Ochsenfeld-Effekts in Form der Ginsburg-Landau-Theorie dient als Vorbild für den sogenannten Higgs-Mechanismus, durch den in der Hochenergiephysik die Masse der Austauschteilchen der Elektroschwachen Wechselwirkung generiert wird.

Literatur

  • Walther Meißner, Robert Ochsenfeld: Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. In: Naturwissenschaften. Band 21, Nr. 44, 1933, S. 787–788, doi:10.1007/BF01504252.
  • Horst Stöcker: Taschenbuch der Physik. 4. Auflage, Verlag Harry Deutsch, Frankfurt am Main 2000, ISBN 3-8171-1628-4

Einzelnachweise

  1. Ludwig Bergmann,Clemens Schaefer: Lehrbuch der Experimentalphysik. Festkörper. 2. Auflage. Band 6. de Gruyter, 2005, ISBN 3-11-017485-5 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 6. Juli 2014]).
  2. u.a. G. Lippmann: Sur les propriétés des circuits électriques dénués des résistance. In: Comptes rendus. Band 168, 1919, S. 73–78.

Weblinks

 <Lang> Commons: Meißner-Ochsenfeld-Effekt – Album mit Bildern, Videos und Audiodateien

Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.