Magnetischer Fluss

Magnetischer Fluss

Physikalische Größe
Name Magnetischer Fluss
Formelzeichen $ \Phi $
Größen- und
Einheitensystem
Einheit Dimension
SI Wb M·L2·I−1·T−2
Gauß (cgs) Mx L3/2·M1/2·T−1
esE (cgs) statWb = dyn−1/2·s L1/2·M1/2
emE (cgs) Mx L3/2·M1/2·T−1

Der Magnetische Fluss (Formelzeichen: $ \Phi $) ist eine physikalische Größe zur Beschreibung des magnetischen Feldes. Er ist – analog zum elektrischen Strom – die Folge einer magnetischen Spannung und fließt durch einen magnetischen Widerstand. Da selbst das Vakuum einen solchen magnetischen Widerstand darstellt, ist der magnetische Fluss nicht an ein bestimmtes „Medium“ gebunden und wird über Feldgrößen beschrieben.

Allgemeines

Betrachtet man beispielsweise einen kleinen Zylinder aus einem Material mit gegebener magnetischer Leitfähigkeit, an dem eine magnetische Spannung $ U_\text{m} $ (bestimmt durch seine Länge und die magnetische Feldstärke $ H $) anliegt, so stellt sich ein Strom proportional zu seiner Querschnittsfläche ein. Analog zum elektrischen Widerstand definiert man so den magnetischen Widerstand $ R_\text{m} $ und kommt zu dem Zusammenhang:

$ \Phi = \frac{U_\text{m}}{R_\text{m}} $

Herrscht beispielsweise im einfachsten linearen, homogenen Fall zwischen den mit dem Abstand $ d $ zueinander befindlichen Polschuhen eines Magneten die magnetische Feldstärke $ H $, so herrscht entlang der Strecke $ d $ die magnetische Spannung:

$ U_\text{m} = H \cdot d $

Durch diese magnetische Spannung bildet sich zwischen den Polschuhen der magnetische Fluss aus. Je nach dem magnetischen Widerstand des zwischen den Polschuhen befindlichen Materials (bzw. des leeren Raumes) stellt sich eine bestimmte Größe des magnetischen Flusses ein. Der magnetische Widerstand ist dabei an die magnetische Leitfähigkeit als Stoff- bzw. Naturkonstante gebunden, so wie ein ohmscher Widerstand an die Stoffkonstante der elektrischen Leitfähigkeit des Widerstandsmaterials gebunden ist.

Im Regelfall arbeitet man in der Feldtheorie nicht direkt mit dem magnetischen Fluss, sondern mit der damit verknüpften magnetischen Flussdichte. Der Grund liegt darin, dass man einen Fluss nur einer bestimmten Fläche im Raum zuordnen kann, nicht aber diskreten Feldpunkten: Es existiert keine Funktion $ \Phi $(x,y,z), wobei x, y, z Ortskoordinaten bezeichnen. Zeichnerisch wird daher der magnetische Fluss als eine Art „Röhre“ (Flussröhre) dargestellt. Um diese Schwierigkeiten zu vermeiden, wird daher meist mit der vektoriellen Größe der magnetischen Flussdichte gearbeitet. Umgekehrt lässt sich so der magnetische Fluss durch eine Fläche $ A $ aus der magnetischen Flussdichte $ B $ ableiten. Ganz allgemein ist der magnetische Fluss durch eine orientierte Fläche $ \vec{A} $ daher definiert als:

$ \Phi= \int\limits_{A} \vec{B} \cdot \mathrm{d}\vec{A} $

Besondere Fälle

  • Falls das magnetische Feld homogen, und die Fläche nicht gekrümmt ist, so ist der magnetische Fluss gleich dem Skalarprodukt aus magnetischer Flussdichte $ \vec{B} $ und dem Flächenvektor $ \vec{A} $ (Normalenvektor der Fläche):
    $ \Phi=\vec B \cdot \vec A $
  • Da das magnetische Feld quellenfrei ist (magnetische Monopole sind nur hypothetische Teilchen) sind die magnetischen Flussdichtelinien immer in sich geschlossen. Dies wird in den Maxwell-Gleichungen ausgedrückt durch:
    $ \nabla\cdot\vec{B}=0 $

Daher ist der magnetische Fluss durch eine geschlossene Oberfläche eines Raumsegmentes immer Null, da nach dem Integralsatz von Gauß gilt:

$ \Phi=\oint \limits_{\partial V}\vec{B}\cdot\mathrm{d}\vec{A}=\int \limits_V\nabla\cdot\vec{B}\;\mathrm dV=0 $

Verketteter Fluss, Verkettungsfluss, Induktionsfluss

Fläche einer Spule mit drei Windungen

Als verketteter Fluss (Verkettungsfluss, Induktionsfluss oder auch Spulenfluss) wird der gesamte magnetische Fluss einer Induktivität bzw. Spule bezeichnet, der sich bei der Integration der magnetischen Flussdichte $ B $ über die Fläche $ A_v $ ergibt, die durch die Spule samt ihren Zuleitungen gebildet wird:

$ \Psi= \int\limits_{A_v} \vec B \cdot \mathrm{d}\vec {A_v} $

Als Integrationsfläche $ A_v $ kann eine beliebige orientierte Fläche verwendet werden, die von der kurzgeschlossenen Spule berandet wird. Denn da es keine magnetischen Monopolladungen gibt, kommt es bei der Berechnung des Flusses ausschließlich auf die Randlinie, nicht aber auf die genaue Form der Fläche an. Das nebenstehende Bild zeigt eine mögliche Spulenfläche am Beispiel einer Spule mit drei Windungen. Bei einer üblichen Spulenanordnung wird die Fläche von den magnetischen Feldlinien im Spulenkern $ N $ mal durchstoßen, wenn das Feld im Kern näherungsweise homogen ist. Es ergibt sich dann: $ \Psi \approx N \cdot \Phi_\text{w} $, wobei $ \Phi_\text{w} $ der magnetische Fluss durch eine Windung bzw. die Querschnittsfläche des magnetischen Kerns ist.

Anschaulich kann der verkettete Fluss in der folgenden Form beschrieben werden: Die induzierte Spannung in einer Windung ergibt sich aus der Änderung des von einer einzigen Windung umschlossenen magnetischen Flusses $ \Phi_\text{w} $. Wird, wie bei einer Spule, eine weitere Windung in Reihe zur ersten geschaltet ergibt sich auch in dieser Windung eine gleich große induzierte Spannung, soweit beide Windungen den gleichen Fluss umfassen. Beide induzierte Spannungen addieren sich aufgrund der Reihenschaltung der Windungen. Bei $ N $ Windungen für die gesamte Spule ergibt sich somit eine induzierte Spannung proportional zur Änderung von $ \Psi= N \cdot \Phi_\text{w} $. Diese Gesamtspannung liegt an den Klemmen der Spule an und somit ist der verkettete magnetische Fluss $ \Psi $ und nicht der einfache magnetische Fluss $ \Phi_\text{w} $ für die Strom-Spannungsbeziehung und die Induktivität der Spule zu berücksichtigen.

In der elektrotechnischen Literatur hat es sich weitgehend durchgesetzt, den magnetischen Fluss im Magnetkern mit $ \Phi $ und den magnetischen Fluss durch die von der Spule aufgespannten Fläche mit $ \Psi $ zu bezeichnen. Die Wahl des unterschiedlichen Buchstabens sollte dabei nicht zu dem naheliegenden Irrtum verleiten, dass es sich beim verketteten Fluss um eine vom gewöhnlichen magnetischen Fluss verschiedene neue physikalische Größe handelt. Denn der verkettete Fluss einer Spule ist physikalisch betrachtet nichts anderes als der gewöhnliche magnetische Fluss, der sich für den Spezialfall einer Spulenfläche ergibt. Die Wahl des neuen Buchstabens ist jedoch dabei nützlich, den Spulenfluss von dem magnetischen Fluss zu unterscheiden, der den Querschnitt des Spulenkerns durchdringt.

Maßeinheit

Die Maßeinheit des magnetischen Flusses im SI-Einheitensystem ist Weber, das Einheitenzeichen Wb:

$ [\Phi]=\mathrm{T \cdot m^2} = \mathrm{V \cdot s} = \mathrm{Wb} $

Veranschaulichung des magnetischen Kraftflusses

Magnetischer Fluss entlang der Achse einer langen, dünnen Zylinderspule.

Während es für den elektrischen Fluss und die dahinterstehende elektrische Ladung Q in C (bzw. As) verhältnismäßig leicht fällt, eine anschauliche Vorstellung von ihr zu entwickeln, nämlich die einer entsprechend großen Zahl von Elektronen, fähig, z. B. eine Sekunde lang einen Strom von 1 A aufrechtzuerhalten, fällt das beim magnetischen Fluss, gemessen in Wb (bzw. Vs), weitaus schwerer.

Eine der Möglichkeiten ist es, dazu auf den in manchen (älteren) Lehrbüchern der Physik zu findenden Begriff der Zeitsumme der Spannung bzw. Spannungszeitsumme [1], in Anlehnung an den Begriff des Kraftstoßes auch Spannungsstoß [2][3] genannt, zurückzugreifen:

$ \Phi= -\int U_\text{ind} \cdot \mathrm{dt} $

Zeichnet man nämlich die Induktionsspannung in einer Leiterschleife als Funktion der Zeit auf, zeigt sich, dass die Fläche unterhalb der Spannungskurve bei gleichbleibender Stärke des Erregerfelds stets dieselbe bleibt, egal, wie schnell oder langsam die Flussänderung vonstattengeht. Dementsprechend lautet eine der auf dem Begriff der Spannungszeitsumme fußenden Definitionen des magnetischen Kraftflusses $ \Phi $ wie folgt:

„Der Kraftfluß durch eine Fläche beträgt 1 Weber […], wenn in einem sie umrandenden Stromkreis bei Verschwinden des Kraftflusses durch die Fläche eine Spannungszeitsumme von 1 V·s induziert wird.“

Umgangssprachlicher formuliert: Ein magnetischer Kraftfluss von 1 Weber (bzw. 1 Vs) ist diejenige „Menge an Magnetismus“, die bei ihrem Verschwinden in dem sie umgebenden Stromkreis eine Sekunde lang eine Spannung von 1 V aufrechtzuerhalten vermag. (Vgl. auch Spannungszeitfläche)

Quantentheorie

Bei der Betrachtung von Quantenphänomenen (z. B. Aharonov-Bohm-Effekt, Quanten-Hall-Effekt) ist das magnetische Flussquantum

$ \Phi_0=\frac{h}{e} $,

also der Quotient aus dem planckschen Wirkungsquantum und der Elementarladung, eine zweckmäßige Größe. In Supraleitern weist das Flussquantum einen Betrag von

$ \Phi_0=\frac{h}{2e} $

auf. Der experimentelle Befund $ \Phi_0=\frac{h}{q} $, mit $ q=2e $, in diversen Versuchen zu Supraleitern (wie beim magnetischen Fluss durch einen supraleitenden Ring) gab den Hinweis darauf, dass die Ladungsträger hier die Ladung $ 2e $ haben, woraus auf die Existenz von Cooper-Paaren geschlossen werden kann.

Literatur

  • Karl Küpfmüller, Gerhard Kohn: Theoretische Elektrotechnik und Elektronik. 14. Auflage. Springer, 1993, ISBN 3-540-56500-0.

Weblinks

Einzelnachweise

  1. Grimsehl: Lehrbuch der Physik, Bd. II; Leipzig 1954, S. 321-323
  2. Christian Gerthsen: Physik. 4. Auflage, Springer, Berlin 1956, S. 258
  3. Adalbert Prechtl: Vorlesungen über die Grundlagen der Elektrotechnik, Band 2; Springer-Verlag 2007, S.121

Diese Artikel könnten dir auch gefallen



Die letzten News


25.01.2021
Weltraumteleskop findet einzigartiges Planetensystem
Das Weltraumteleskop CHEOPS entdeckt sechs Planeten, die den Stern TOI-178 umkreisen.
25.01.2021
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen? Das können Physikerinnen und Physiker anhand von Präzisionsmessungen des Gewichts, der Größe und der Form von Atomkernen erkennen.
25.01.2021
Physiker erzeugen und leiten Röntgenstrahlen simultan
Röntgenstrahlung ist meist ungerichtet und schwer zu leiten.
25.01.2021
Optimale Information über das Unsichtbare
Wie vermisst man Objekte, die man unter gewöhnlichen Umständen gar nicht sehen kann? Universität Utrecht und TU Wien eröffnen mit speziellen Lichtwellen neue Möglichkeiten.
23.01.2021
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
23.01.2021
Die Entstehung des Sonnensystems in zwei Schritten
W
23.01.2021
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
20.01.2021
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
20.01.2021
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
20.01.2021
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
Aufwändige und in diesem Umfang bis dahin noch nicht realisierte Computersimulationen zur Turbulenz in interstellaren Gas- und Molekülwolken haben wichtige neue Erkenntnisse zu der Frage gebracht, welche Rolle sie bei der Entstehung von Sternen spielt.
20.01.2021
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
25.12.2020
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.
25.12.2020
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.