Magnetische Suszeptibilität

Magnetische Suszeptibilität

Die magnetische Suszeptibilität $ \chi $ (v. lat. susceptibilitas „Übernahmefähigkeit“) ist eine einheitenlose physikalische Größe, die die Magnetisierbarkeit von Materie in einem externen Magnetfeld angibt. Im einfachsten Fall ist sie eine für den jeweiligen Stoff charakteristische Proportionalitätskonstante, nämlich das Verhältnis der Magnetisierung zur magnetischen Feldstärke. In anderen Fällen kann sie von verschiedenen Größen abhängen, z. B. vom Ort, der Frequenzen des Magnetfeldes und der vorhergehenden Magnetisierung. Ihre möglichen Werte reichen von −1 bis nahezu unendlich, wobei negative Werte eine Magnetisierung entgegen dem äußeren Magnetfeld bedeuten (Diamagnetismus).

Die magnetische Suszeptibilität ist eng mit der magnetischen Permeabilität verwandt.

Der vergleichbare Zusammenhang zwischen Polarisierung und elektrischem Feld wird durch die (di-)elektrische Suszeptibilität beschrieben.

Definition

Die gebräuchlichste Form, die magnetische Volumensuszeptibilität $ \chi $ (häufig auch $ \chi_V $; $ \chi $ ist der griechische Buchstabe Chi), beschreibt im einfachsten Fall eine Proportionalitätskonstante zwischen der Magnetisierung $ \vec{M} $ und der magnetischen Feldstärke $ \vec{H} $:

$ \vec{M} = \chi_V \vec{H}. $

Diese Definition ist nur korrekt, sofern magnetische Feldstärke und Magnetisierung einen einfachen linearen Zusammenhang aufweisen.

Im Allgemeinen lässt sich die magnetische Suszeptibilität als Ableitung definieren:

$ \chi_{ij} = \frac{\partial M_i}{\partial H_j}, $

also als Änderung der Magnetisierung bei Änderung der magnetischen Feldstärke. Die Indices $ i,j $ bezeichnen die Komponenten der räumlichen Orientierung ($ x,y,z $ in kartesischen Koordinaten) der entsprechenden Felder. In dieser Form ist die Suszeptibilität eine tensorielle Größe und berücksichtigt, dass Magnetisierung und Magnetfeld in verschiedene Richtungen zeigen können (magnetische Anisotropie).

Beziehung zu verwandten Größen

Molare und Massensuszeptibilität

Für die magnetische Suszeptibilität sind zwei weitere Maße gebräuchlich:

  • die magnetische Massensuszeptibilität $ \chi_\text{mass} $ (auch $ \chi_g $ oder $ \chi_m $(!)) in m3·kg−1 bezeichnet die Suszeptibilität pro Dichte $ \rho: $
$ \chi_\text{mass} = \frac{\chi_V}{\rho} = \chi_V \cdot \frac{V}{m} $
mit Masse $ m $ und Volumen $ V. $
  • die molare magnetische Suszeptibilität $ \chi_\text{mol} $ in m3·mol−1 unterscheidet sich durch die Verwendung der Molmasse $ M $ bzw. des Molvolumens $ V_\mathrm{m} $:
$ \chi_\text{mol} = M \cdot \chi_\text{mass} = M \cdot \frac{\chi_V}{\rho} = \chi_V \cdot \frac{m}{n} \cdot \frac{V}{m} = \chi_V \cdot \frac{V}{n} = \chi_V \cdot V_\mathrm{m} $
mit der Stoffmenge $ n. $

Magnetische Permeabilität

Die konstante magnetische Suszeptibilität steht in einem einfachen Zusammenhang mit der relativen magnetischen Permeabilität:

$ \chi_V = \mu_r - 1 $

Dies folgt aus der Abhängigkeit der magnetischen Flussdichte B von der Magnetisierung M und der magnetischen Feldstärke H:

$ B = \mu_0 \cdot (H + M) = \mu_0 \cdot (1 + \chi_V) \cdot H = \mu_0 \cdot \mu_r \cdot H $

mit der magnetischen Feldkonstante $ \mu_0. $

Konversion zwischen SI- und CGS-Einheiten

Alle obigen Definition beziehen sich auf das in Deutschland vorgeschriebene Internationale Einheitensystem (SI). Da im gaußschen CGS-System die Permeabilitätskonstante des Vakuums abweichend definiert wird, ergibt sich ein Umrechnungsfaktor von 4π:

$ \chi_V^\text{CGS} = \frac{1}{4 \pi} \cdot \chi_V^\text{SI} $

Da die (Volumen-)Suszeptibilität auch im CGS-System einheitenlos ist, muss insbesondere bei Nutzung älterer Tabellenwerte auf das verwendete Einheitensystem geachtet werden. Beispielsweise beträgt die Suszeptibilität von 20 °C warmen Wasser −7,19·10−7 im CGS-System, was einem Wert von −9,04·10−6 im SI entspricht.


Klassifizierung magnetischer Materialien

Konstante magnetische Suszeptibilität / ohne magnetische Ordnung

Alle Stoffe reagieren zu einem gewissen Grad auf magnetische Felder. Im einfachsten Fall konstanter magnetischer Suszeptibilität werden zwei Effekte unterschieden, die in jedem Aggregatzustand auftreten. Da sie in der Regel sehr schwach sind, werden viele dieser Stoffe auch als „unmagnetisch“ ausgewiesen.

Paramagnetismus $ \chi > 0 $

Paramagnetische Stoffe besitzen permanente magnetische Dipole, die ohne äußeres Magnetfeld aufgrund der thermischen Bewegung über alle Raumrichtungen verteilt sind, so dass die mittlere Magnetisierung Null beträgt. Im äußeren Magnetfeld richten sich die atomaren magnetischen Momente parallel zum äußeren Feld aus und verstärken damit das Magnetfeld im Innern des Stoffes. Die Magnetisierung ist also positiv und damit auch die Suszeptibilität. Im inhomogenen Magnetfeld wird ein paramagnetischer Körper in den Bereich großer Feldstärke gezogen. Die Temperaturabhängigkeit der Suszeptibilität wird durch das Curiesche Gesetz bestimmt. Paramagnetismus kann auch andere Ursachen haben, so liefern Leitungselektronen von Metallen einen temperaturunabhängigen Beitrag (Pauli-Paramagnetismus). Beispiele für paramagnetische Stoffe: Aluminium, Natrium, α-Mangan, Sauerstoff O2.

Diamagnetismus $ \chi<0 $

Diamagnetische Stoffe haben das Bestreben, das Magnetfeld aus ihrem Innern zu verdrängen. Sie besitzen kein permanentes magnetisches Dipolmoment. Im Magnetfeld werden jedoch Dipole induziert, die dem äußeren Feld entgegengerichtet sind, so dass das resultierende Feld im Inneren des Materials kleiner als außerhalb ist. Da die Magnetisierung sich also gegen die Richtung eines externen Magnetfeldes einstellt, ist die Suszeptibilität negativ. Im inhomogenen Magnetfeld wird ein diamagnetischer Körper aus dem Bereich großer Feldstärke herausgedrängt. Diamagnetische Beiträge sind im Allgemeinen temperaturunabhängig und ergeben sich nach dem Prinzip der Lenzschen Regel. Sie sind damit in allen Materialien vorhanden, wenn auch meist nicht dominant. Beispiele für diamagnetische Stoffe: Wasserstoff H2, Edelgase, Stickstoff N2, Kupfer, Blei, Wasser.

Einen Sonderfall stellen die Supraleiter dar. Sie verhalten sich im konstanten Magnetfeld als ideale Diamagneten mit $ \chi = -1 $. Dieser Effekt heißt Meißner-Ochsenfeld-Effekt und ist ein wichtiger Bestandteil der Supraleitung.

Variable magnetische Suszeptibilität / mit magnetischer Ordnung

Festkörper mit einer magnetischen Ordnung sprechen sehr stark auf Magnetfelder an. Ihre magnetische Suszeptibilität zeigt dabei ein kompliziertes Verhalten. Oberhalb einer Schwellentemperatur verhält sie sich paramagnetisch, unterhalb hängt sie von weiteren Faktoren ab:

Ferromagnetismus

Ferromagneten richten ihre magnetischen Momente parallel zum äußeren Magnetfeld aus, tun dies aber in einer stark verstärkenden Weise. Es ist vielfach möglich, einen Ferromagneten komplett zu magnetisieren, so dass die Suszeptibilität einen Sättigungseffekt zeigt. Außerdem hängt letztere von der vorhergehenden Magnetisierung ab; man sagt, sie haben ein Gedächtnis. Das Verhalten wird durch eine Hystereseschleife beschrieben. Beispiele für Ferromagneten sind α-Eisen, Kobalt, Nickel.

Ferrimagnetismus

Die Suszeptibilität von Ferrimagneten hängt, wie bei den Ferromagneten, von der vorhergehenden Magnetisierung ab. Der Grund für ihr magnetisches Verhalten ist eine antiparallele Ausrichtung von unterschiedlich großen magnetischen Momenten in einem Kristall. Das Kristallgitter eines ferrimagnetischen Stoffes lässt sich durch zwei ineinander gestellte Untergitter beschreiben. Dabei stehen ohne äußeres Magnetfeld die magnetischen Momente der Untergitter genau antiparallel; sie haben aber unterschiedlichen Betrag, so dass ohne angelegtes Feld eine spontane Magnetisierung vorhanden ist. Die Magnetisierungskurve ist ähnlich zu der von Ferromagneten, aber mit wesentlich niedrigerer Sättigungsmagnetisierung. Ein Beispiel für ein ferrimagnetisches Material ist Magnetit (Fe3O4).

Antiferromagnetismus

Antiferromagnete sind magnetisch anisotrop, d. h. ihre Suszeptibilität hängt von der Orientierung des Festkörpers im Magnetfeld ab. Liegt das äußere Magnetfeld in einer Ebene mit den elementaren magnetischen Momenten, so ist der Zusammenhang zwischen Suszeptibilität und Temperatur näherungsweise linear. Steht das Magnetfeld senkrecht zu jener Ebene, so ist die Suszeptibilität näherungsweise temperaturunabhängig. Das Kristallgitter eines antiferromagnetischen Stoffes lässt sich durch zwei ineinander gestellte Untergitter beschreiben. Dabei stehen ohne äußeres Magnetfeld die magnetischen Momente der Untergitter genau antiparallel; sie haben aber gleichen Betrag, so dass ohne angelegtes Feld die Magnetisierung verschwindet. Die Temperaturabhängigkeit wird durch die Néel-Temperatur beschrieben. Beispiele für Antiferromagneten: Metalle mit eingebauten paramagnetischen Ionen wie MnO oder MnF2.

Verwendung

Ferri- und ferromagnetische Stoffe können als Permanentmagneten verwendet werden, wenn diese nach Abschalten des äußeren Magnetfeldes eine große Restmagnetisierung aufweisen. Weichmagnetische Werkstoffe lassen sich hingegen sehr einfach (um-)magnetisieren und werden deshalb beispielsweise für Generatoren und Transformatoren verwendet.

Berechnung mittels der Gouyschen Waage

Zur Gouy-Waage siehe Magnetochemie.

Mit einer Gouyschen Waage können die Änderungen zweier Kräfte gemessen werden:

$ \Delta F_g = \Delta m \cdot g $
  • durch Einbringen eines para- oder diamagnetischen Stoffes in ein magnetisches Feld H werden die Feldlinien zusammengezogen oder gespreizt. Dadurch ändert sich die Kraft (vorher Luft: $ \chi_{v1} \approx 0, $ nachher Material: $ \chi_{v2} \neq 0 $):
$ \begin{align} \Delta F_z & = -\frac{1}{2} \cdot (\chi_{v2} - \chi_{v1}) \cdot \mu \cdot H^2 \cdot A\\ & \approx -\frac{1}{2} \cdot \chi_{v2} \cdot \mu \cdot H^2 \cdot A \end{align} $
mit der Fläche A der zu untersuchenden Substanz, die vom Magnetfeld durchdrungen wird.

Aus dem Gleichgewicht $ \Delta F_g = \Delta F_z $ an der Waage kann die Volumen-Suszeptibilität bestimmt werden:

$ \chi_v = -2 \cdot \frac{\Delta m \cdot g}{\mu \cdot H^2 \cdot A} $

Aus der Beziehung

$ B = \mu_0 \cdot (1 + \chi_v) \cdot H = \mu \cdot H $

für das Magnetfeld kann das magnetisierende Feld $ H = B / \mu_0 $ für das Vakuum ($ \chi_v = 0 $) bestimmt werden. Für einen Neodymmagneten mit einer magnetischen Flussdichte B = 0,29 T ergibt sich beispielsweise eine magnetische Feldstärke H = 230.781 A/m ≈ 2.899 Oe direkt auf der Oberfläche eines Pols.

Das magnetisierende Feld ist ebenso wie das Magnetfeld abhängig von Position und Entfernung vom stromdurchflossenen Leiter oder Magneten und kann durch Kreisintegralrechnung genau bestimmt werden.

Magnetische Suszeptibilität einiger Materialien

Material $ T $ $ \chi_\text{mol} $ $ \chi_\text{mass} $ $ \chi_{V} $
°C (SI)
10−9 m3·mol−1
(cgs)
10−6 cm3·mol−1
(SI)
10−9 m3·kg−1
(cgs)
10−6 cm3·g−1
(SI)
10−6
(cgs)
10−6
Vakuum bel. 0 0 0 0 0 0
Wasser [1] 20 −0,163 −13 −9,05 −0,72 −9,035 −0,719
Bi [2] 20 −3,55 −282 −17,0 −1,35 −166 −13,2
Diamant [3] RT −0,069 −5,5 −5,8 −0,46 −20 −1,6
He [4] −0,0238 −1,89 −5,93 −0,472
Xe [4] −0,57 −45,4 −4,35 −0,346
O2 [4] 43 3420 2690 214
Al 0,22 17 7,9 0,63
Ag [5] −0,238 −18,9 −2,20 −0,175

Siehe auch

Weblinks

Einzelnachweise

  1. G P Arrighini, M Maestro, R Moccia: Magnetic Properties of Polyatomic Molecules: Magnetic Susceptibility of H2O, NH3, CH4, H2O2. In: J. Chem. Phys.. 49, 1968, S. 882–889. doi:10.1063/1.1670155.
  2. S Otake, M Momiuchi, N Matsuno: Temperature Dependence of the Magnetic Susceptibility of Bismuth. In: J. Phys. Soc. Jap.. 49, Nr. 5, 1980, S. 1824–1828. doi:10.1143/JPSJ.49.1824.
    Der Tensor muss über alle Raumrichtungen gemittelt werden: $ \chi=(1/3)\chi_{||}+(2/3)\chi_{\perp} $.
  3. J Heremans, C H Olk, D T Morelli: Magnetic Susceptibility of Carbon Structures. In: Phys. Rev. B. 49, Nr. 21, 1994, S. 15122–15125. doi:10.1103/PhysRevB.49.15122.
  4. 4,0 4,1 4,2 R E Glick: On the Diamagnetic Susceptibility of Gases. In: J. Phys. Chem.. 65, Nr. 9, 1961, S. 1552–1555. doi:10.1021/j100905a020.
  5. C L Foiles: Comments on Magnetic Susceptibility of Silver. In: Phys. Rev. B. 13, Nr. 12, 1976, S. 5606–5609. doi:10.1103/PhysRevB.13.5606.

Diese Artikel könnten dir auch gefallen



Die letzten News


03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
03.03.2021
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
03.03.2021
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.