Ljapunow-Exponent

Ljapunow-Exponent

Der Ljapunow-Exponent eines dynamischen Systems (nach Alexander Michailowitsch Ljapunow) beschreibt die Geschwindigkeit, mit der sich zwei (nahe beieinanderliegende) Punkte im Phasenraum voneinander entfernen oder annähern (je nach Vorzeichen). Pro Dimension des Phasenraums gibt es einen Ljapunow-Exponenten, die zusammen das sogenannte Ljapunow-Spektrum bilden. Häufig betrachtet man allerdings nur den größten Ljapunow-Exponenten, da dieser in der Regel das gesamte Systemverhalten bestimmt.

Im Eindimensionalen ist der Ljapunow-Exponent $ \lambda $ einer iterierten Abbildung $ x_{n+1} = f(x_n) $ wie folgt definiert:

$ \lambda(x_0) = \lim_{N\rightarrow\infty} \frac{1}{N} \ln\left|\frac{df^N(x_0)}{dx}\right| $

Betrachtet man allgemeiner Trajektorieverläufe im Phasenraum, dann liefern die Exponenten ein Maß für die Rate an Separation von einer Ursprungstrajektorie $ \Gamma(t_{0}) $. In Bezug auf eine zeitkontinuierliche Betrachtung eines dynamischen Systems lässt sich dieser Zusammenhang formal allgemein darstellen als: $ \delta\Gamma(t)\approx e^{\lambda t}\delta\Gamma(t_{0}) $, wobei $ \delta\Gamma(t) $ die Linearisierung der Trajektorie zum Zeitpunkt $ t $ darstellt.

Eigenschaften

  • Ist der größte Ljapunow-Exponent positiv, so ist das System in der Regel divergent.
  • Ist er negativ, so entspricht dies einer Phasenraumkontraktion, d. h. das System ist dissipativ und agiert stationär oder periodisch stabil.
  • Ist er null, laufen ursprünglich dicht beieinander liegende Punkte im Phasenraum nicht mehr exponentiell wie im Fall des positiven größten Exponenten auseinander, sondern nur noch polynomiell.
  • Ist die Summe der Ljapunow-Exponenten null, so handelt es sich um ein konservatives System. Außerdem gilt dann dabei die wichtige Besonderheit, dass eine inverse Betrachtung des jeweiligen Prozesses (inverse Zeitentwicklung oder inverse Abbildungsreihenfolge) ebenso zu einem inversen Spektrum der Exponenten führt, also eine gewisse Symmetrie auch in Bezug auf diese erhalten bleibt: $ \lambda_{i}=-\lambda_{N_{LE}-i+1} $, wobei $ N_{LE} $ die Gesamtanzahl an Ljapunow-Exponenten des Systems ist. Dies gilt unter der Voraussetzung, dass das entsprechende System auch wirklich reversibel ist.
  • Das Spektrum der Exponenten kann degeneriert sein. In diesem Fall treten Exponenten mit einer jeweils individuellen Vielfachheit auf.
  • Die Gesamtanzahl an Ljapunow-Exponenten, ohne Betrachtung ihrer jeweiligen Vielfachheit, eines Systems entspricht der Anzahl an Freiheitsgraden des betrachteten Systems.
  • Die Exponenten sind stets Metrik-invariant.
  • Für hinreichend große betrachtete Zeiten $ t\rightarrow\infty $ oder Iterationen $ N\rightarrow\infty $ gilt, dass die Exponenten unabhängig von der Wahl von $ t_0 $ bzw. $ N_0 $ sind. Dieser Aspekt spielt eine besondere Rolle für die Gültigkeit der Exponenten im Zusammenhang mit Simulationen.

Satz von Oseledets

Ein wichtiger Meilenstein in der Theorie der nichtlinearen dynamischen Systeme war der 1965 publizierte Satz von Valery Oseledets, der auch im selben Jahr noch von selbigem und ein Jahr später in einem anderen Zusammenhang von M. S. Raghunathan bewiesen worden ist. Der Satz, der eigentlich aus mehreren Sätzen besteht, macht unter anderem wichtige Existenzaussagen zu Ljapunow-Exponenten in Bezug auf eine große Klasse nichtlinearer dynamischer Systeme. Bis zur Veröffentlichung des Satzes war über diesen Bezug lediglich spekuliert worden und die Ermittlung der Exponenten nur für einfache (iterative) Abbildungen möglich.

In Bezug auf die Ljapunow-Exponenten spielt vor allem folgende Beziehung aus dem Satz von Oseledets eine große Rolle (differentialgeometrische Fassung):

Sei ein ergodisches dynamisches System gegeben, das auf einer Riemannschen Mannigfaltigkeit mit einer spezifizierten Metrik definiert ist. Sei weiterhin $ \mathbf{{M}} $ der Entwicklungsoperator des dynamischen Systems im entsprechenden Tangentialraum, der üblicherweise bei zeitdiskreter Betrachtung durch eine Fundamentalmatrix darstellbar ist.

Dann gilt in zeitkontinuierlicher Darstellung für fast jeden Nicht-Nullvektor $ \mathbf{{e}}\in\mathbb{R}^{N} $, wobei $ N $ hier die Dimension der Riemannschen Mannigfaltigkeit ist:

$ \lambda(\mathbf{{e}})=\lim_{t_{2}\to\infty}\frac{{1}}{t_{2}-t_{1}}\ln\frac{{\left\Vert \mathbf{M}(t_{1},t_{2})\mathbf{e}\right\Vert }}{\left\Vert \mathbf{e}\right\Vert } $.

Ljapunow-Vektoren und die Berechnung der Exponenten

Die ermittelbaren Skalare aus Oseledets Theorem entsprechen zwar per Definition Ljapunow-Exponenten, es ist jedoch nicht sofort ersichtlich, wie sich aus dieser Gesetzmäßigkeit das Spektrum der (charakteristischen) Ljapunow-Exponenten eines Systems ermitteln lässt, da die Wahl der zu evolvierenden Vektoren in Bezug eben auf dieses Gesetz und durch dieses nicht näher spezifiziert wird. Oseledet konnte in und mit weiteren Punkten seines Theorems zeigen, dass die Gesamtmenge an evolvierbaren Vektoren auf den Systementwicklungsprozess bezogen eine verschachtelte Unterraumstruktur aufspannt:

$ F_{n}(t)\subset F_{n-1}(t)\subset...\subset F_{1}(t)=\mathbb{R}^{n} $,

wobei die Ljapunow-Exponenten die Wachstums- bzw. Schrumpfraten (wieder je nach Vorzeichen) der Volumina dieser Unterräume repräsentieren. Wichtig im weiteren Verlauf ist, dass diese Unterräume eindeutig durch ein Orthogonalsystem beschreibbar sind.

Methode von Benettin et al.

Eine bewährte Methode, die Exponenten darauf aufbauend zu berechnen, wurde früh von Benettin et al. vorgeschlagen. Formuliert wurde ein Algorithmus, der bei zeitdiskreter Betrachtung die Exponenten mittels der Entwicklung sogenannter Gram-Schmidt-Vektoren auf statistische Art und Weise ermittelt: Bei zeitdiskreter Darstellung gilt für die Fundamentalmatrix:

$ \mathbf{{M}}_{k,n}=\prod_{i=n}^{k+n-1}\mathbf{{J}}\left(\delta\mathbf{{x}}_{i}\right) $,

wobei $ k $ einen diskreten Zeitabstand repräsentiert, $ n $ ein diskreter globaler Zeit- bzw. Iterationsschritt ist und $ \mathbf{{J}} $ die entsprechende Jacobi-Matrix darstellt. Entwickelt man diesbezüglich ein Orthogonalsystem an Vektoren, so muss, so die Prämisse von Benettin et al., dieses bei hinreichend großer Zeitentwicklung ausgehend von Oseledets Theorem direkt Information über die Ljapunow-Exponenten enthalten. Dem im Weg steht jedoch die problematische Tatsache, dass auf diese Weise entwickelte Orthogonalsysteme bei hinreichend großer Schrittweite in fast jedem Fall schnell ihre Orthogonalität verlieren. Dies hat nicht nur rein numerische Gründe bei der Berechnung mittels eines Computers, sondern auch Gründe in Bezug auf Oseledets Theorem an sich, da die Unterräume gegen ihre jeweiligen einbettenden Räume mit exponentieller Geschwindigkeit konvergieren. Das heißt, dass die Richtung der stärksten Unterraumvolumenänderung im Tangentialraum (bestimmt über den größten Ljapunow-Exponenten) dominierend wird. Um dies zu verhindern, muss die jeweilige Fundamentalmatrix nach einer festgelegten oder dynamisch ermittelbaren Schrittanzahl reorthogonalisiert werden. Die Namensgebung von Gram-Schmidt-Vektoren beruht genau darauf, dass man dafür ein modifiziertes oder iteratives Gram-Schmidt-Verfahren verwenden kann. Es gibt jedoch auch noch andere, numerisch stabilere Verfahren wie die explizite QR-Zerlegung oder die Givens-Rotation. Im Bereich des wissenschaftlichen Rechnens haben sich jedoch optimierte iterative Gram-Schmidt-Verfahren stark etabliert, da diese besonders gut parallelisierbar sind und hinreichend genau arbeiten.

Bei der Anwendung dieser Reorthogonalisierung auf $ \mathbf{{M}} $ erhält man die QR-Zerlegung $ \mathbf{{M}}=\mathbf{{Q}}\cdot\mathbf{{R}} $, wobei $ \mathbf{{Q}} $ die Matrix der reorthogonalisierten Gram-Schmidt-Vektoren und $ \mathbf{{R}} $ eine obere Dreiecksmatrix darstellt, die auf der Hauptdiagonalen die lokalen Wachstumsfaktoren der jeweiligen Unterräume enthält. Benettin et al. identifizieren nun mit $ \left\{ \tilde{{\lambda}}(n)\right\} $ die Menge an sogenannten finite time Lyapunov exponents in Bezug auf den betrachteten Zeitbereich bis zur Reorthogonalisierung zum Zeitschritt $ n $. Diese berechnet sich aus dem natürlichen Logarithmus dieser lokalen Wachstumsfaktoren.

Mit $ \lambda^{(j)}=\limsup_{n\rightarrow\infty}\tilde{{\lambda}}^{(j)}(n) $ lässt sich nun die Brücke zu den „echten“ Ljapunow-Exponenten des Systems schlagen.

Zusammenfassend bedeutet dies konkret für den Algorithmus:

  1. Initialisiere das zu analysierende System mit den jeweiligen Startparametern.
  2. Erstelle eine passende Einheitsmatrix entsprechend der Anzahl an Freiheitsgraden im System. Diese bildet den Startzustand der Gram-Schmidt-Vektoren.
  3. Wähle eine fixe Rate an Zeitschritten, welche die Häufigkeit der Reorthogonalisierungen bestimmt oder wende ein adaptives Verfahren an. Zu häufige Orthogonalisierungen erhöhen die Berechnungsdauer (QR-Verfahren weisen alle, bis auf Spezialfallalgorithmen, kubische Laufzeiten auf). Zu große Zeitabstände andererseits verschlechtern diesbezüglich jedoch die numerische Genauigkeit.
  4. Wähle eine Samplingrate in Bezug auf die Erfassung der finite time Lyapunov exponents. Diese sollte stets ein ganzzahliges Vielfaches der Orthogonalisierungsrate sein.
  5. Iteriere das System nach den jeweiligen Zeitentwicklungsgleichungen, sowohl im Phasenraum, als auch im Tangentialraum (Fundamentalmatrix und Gram-Schmidt-Vektoren). Linearisiere dazu falls notwendig diese Gleichungen (in der Regel nicht lineare Differentialgleichungen höherer Ordnung). Reorthogonalisiere nach der festgelegten Zeitschrittanzahl und sample die finite time Lyapunov exponents.
  6. Ermittle nach Erreichen individueller Abbruchsbedingungen die eigentlichen Ljapunow-Exponenten mit Hilfe der finite time Lyapunov exponents. Ein üblicher und empfohlener Ansatz ist, mit der eigentlichen Berechnung der Exponenten erst zu beginnen, wenn die Phasenraumtrajektorie gegen den ergodischen Attraktor konvergiert und die Gram-Schmidt-Vektoren einen sogenannten statistisch stationären Zustand erreicht haben, über dessen mögliche Existenz Oseledets Theorem ebenfalls Aussagen trifft.

Es ist zu betonen, dass das Verfahren von Benettin et al. nur ein mögliches unter vielen ist und für spezielle Problemfälle und Systeme andere Verfahren geeigneter sein können. Des Weiteren muss je nach System und Randbedingungen spezifiziert werden, ab wann in der Zeitentwicklung wirklich mit der Berechnung der Exponenten begonnen werden soll und wie viele Gesamtzeitschritte notwendig sind, um statistisch hinreichend gute Daten zu erhalten.

Ljapunow-Vektoren

In Bezug auf diesen generellen Ansatz lassen sich mehrere Vektortypen klassifizieren, die im Allgemeinen, jedoch nicht überall konsistent, in der Fachwelt unter dem Begriff der Ljapunow-Vektoren subsumiert werden und einen mehr oder weniger starken Bezug zu den Exponenten aufweisen. Gemein ist all diesen Vektoren, dass sie Tangentialvektoren des jeweiligen Systems sind. Dies sind im Folgenden auszugsweise:

  • Gram-Schmidt-Vektoren: Diese sind die zeitlokalen orthogonalen Tangentialvektoren, die beispielsweise im Benettin-Algorithmus vorkommen. Sie sind nicht kovariant zur Tangentialraumdynamik und weisen allgemein keine Symmetrien bei inverser Prozessbetrachtung bei reversiblen Systemen auf. Ob ihre (physikalische) Bedeutung über die eines methodischen Hilfsmittels hinaus geht, ist derzeit (Stand April 2016) nicht bekannt.
  • Backward Lyapunov-Vektoren: Oseledets Theorem beweist die Existenz eines sogenannten stationären Zustandes der Gram-Schmidt-Vektoren bei hinreichender Zeitentwicklung, sobald der ergodische Attraktor per Phasenraumentwicklung erreicht worden ist. Die (Gram-Schmidt-)Vektoren, die diesen Zustand repräsentieren, sind der eigentliche Ausgangspunkt für die Berechnung der Exponenten nach Benettin et al. Es muss angemerkt werden, dass dieser stationäre Zustand nicht impliziert, dass die entsprechenden Gram-Schmidt-Vektoren nicht weiterhin fluktuieren können.
  • Forward Lyapunov-Vektoren: Diese sind das Äquivalent der Backward-Lyapunov-Vektoren bei inverser Zeitentwicklungsrichtung des Systems und spielen eine Rolle bei der Berechnung der kovarianten Ljapunow-Vektoren.
  • Kovariante Ljapunow-Vektoren: Die Existenz dieser Vektoren ist schon relativ lang bekannt, jedoch existierte bis 2007 kein Algorithmus, der imstande ist, diese zu berechnen. Da diese wesentlich mehr Informationen über die Stabilität dynamischer Systeme und generell über die Tangentialraumdynamik preisgeben können oder mit sich tragen als beispielsweise die schon umfangreich genutzten Gram-Schmidt-Vektoren, ist deren intensivere Erforschung und Nutzung derzeit mit Stand April 2016 im Bereich der dynamischen Systeme besonders stark zu beobachten. Der Zusammenhang zu den Ljapunow-Exponenten besteht hier derart, dass die Exponenten direkt das Wachstums- bzw. Schrumpfverhalten dieser Vektoren repräsentieren: $ \lim\limits _{t\rightarrow\infty}\frac{1}{t}||\mathbf{{M}}(\mathbf{{x}},t)\mathbf{{v}}_{t}^{(i)}||=\lambda^{(i)} $, wobei $ \mathbf{{M}} $ wieder die Fundamentalmatrix und $ \mathbf{{v}} $ ein kovarianter Ljapunow-Vektor ist.

Bedeutung der Ljapunow-Exponenten

Kaplan-Yorke-Vermutung

Die Kaplan-Yorke-Vermutung liefert eine Abschätzung für die obere Grenze der Informationsdimension $ D_1 $ mit Hilfe des Ljapunow-Spektrums ab. Diese so genannte Kaplan-Yorke-Dimension $ D_{KY} $ ist wie folgt definiert:

$ D_{KY}= k + \frac{\sum_{i=1}^k \lambda_i}{|\lambda_{k+1}|} $,

wobei $ k $ die größte natürliche Zahl ist, für die die Summe positiv bleibt.

Ljapunow-Zeit

Das Inverse des größten Ljapunow-Exponenten, die sogenannte Ljapunow-Zeit bzw. die mittlere Prädiktionszeit, ist die Zeit, für die sich sinnvolle Vorhersagen über das Systemverhalten machen lassen.

Quellen

  • Kantz, H. und Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge 2004, ISBN 0-521-52902-6
  • B. Hasselblatt & A. Katok: Introduction to the modern theory of dynamical systems. Part of Encyclopedia of Mathematics and its Applications, Cambridge 1997, ISBN 978-0-521-57557-7
  • David Ruelle: Ergodic theory on differentiable dynamical systems. IHES Publicationes Mathematiques 50:275-320 (1979)
  • Francesco Ginelli, Hugues Chaté, Roberto Livi, Antonio Politi: Covariant Lyapunov vectors. Journal of physics A: Mathematical and theoretical, Volume 46, Number 25 (04/2013)
  • G. Benettin, L. Galgani and J. M. Strelcyn: Kolmogorov entropy and numerical experiments, Phys. Rev. A 14, 2338 (1976)
  • Govindan Rangarajan, Salman Habib and Robert Ryne: Lyapunov Exponents without Rescaling and Reorthogonalization. 10.1103/PhysRevLett.80.3747 (1998)
  • Günter Radons, Gudula Rünger, Michael Schwind, Hong-liu Yang: Parallel Algorithms for the Determination of Lyapunov Characteristics of Large Nonlinear Dynamical Systems. PARA 2004: 1131–1140
  • Harald A Posch: Symmetry properties of orthogonal and covariant Lyapunov vectors and their exponents. (2011) arxiv:1107.4032
  • Harald A. Posch and R. Hirschl: Simulation of billiards and of hard body fluids in Hard ball systems and the Lorentz gas. Berlin, Germany: Springer (2000)

Weblinks

  • Amie Wilkinson: What are Lyapunov exponents and why are they interesting? In: Bulletin of the American Mathematical Society, 2016 arxiv:1608.02843

Diese Artikel könnten dir auch gefallen



Die letzten News


11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.