Lagrange-Formalismus

Lagrange-Formalismus

Dieser Artikel behandelt die Lagrange-Funktion im Sinne des Lagrange-Formalismus in der Physik. Für die Lagrange-Funktion in der mathematischen Optimierung, siehe Lagrange-Multiplikator.

Der Lagrange-Formalismus ist in der Physik eine 1788 von Joseph-Louis Lagrange eingeführte Formulierung der klassischen Mechanik, in der die Dynamik eines Systems durch eine einzige skalare Funktion, die Lagrange-Funktion, beschrieben wird. Der Formalismus ist (im Gegensatz zu der Newtonschen Mechanik, die a priori nur in Inertialsystemen gilt) auch in beschleunigten Bezugssystemen gültig. Der Lagrange-Formalismus ist invariant gegen Koordinatentransformationen.[1] Aus der Lagrange-Funktion lassen sich die Bewegungsgleichungen mit den Euler-Lagrange-Gleichungen der Variationsrechnung aus dem Prinzip der kleinsten Wirkung bestimmen. Diese Betrachtungsweise vereinfacht viele physikalische Probleme, da sich, im Gegensatz zu der Newtonschen Formulierung der Bewegungsgesetze, im Lagrange-Formalismus Zwangsbedingungen relativ einfach durch das explizite Ausrechnen der Zwangskräfte oder die geeignete Wahl generalisierter Koordinaten berücksichtigen lassen. Aus diesem Grund wird der Lagrange-Formalismus verbreitet bei Mehrkörpersystemen (MKS) eingesetzt.

Für Systeme mit einem generalisierten Potential und holonomen Zwangsbedingungen lautet die Lagrange-Funktion

$ L = T - V $

wobei $ T $ die kinetische Energie und $ V $ die potentielle Energie des betrachteten Systems bezeichnen. Man unterscheidet sogenannte Lagrange-Gleichungen erster und zweiter Art. Im engeren Sinn versteht man unter dem Lagrange-Formalismus und den Lagrange-Gleichungen aber die zweiter Art, die häufig einfach als Lagrange-Gleichungen bezeichnet werden:

$ \frac{\text{d}}{\text{d}t} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial{L}}{\partial q_i} = 0\,. $

Dabei sind $ q_i $ generalisierte Koordinaten und $ \dot{q}_i $ deren Zeitableitungen.

Lagrange-Gleichungen erster und zweiter Art

Mit den Lagrange-Gleichungen erster Art lassen sich die Zwangskräfte explizit ausrechnen. Sie sind äquivalent zu den Gleichungen, die sich aus dem D’Alembertschen Prinzip ergeben. Wir betrachten $ N $ Punktteilchen im $ \ \mathbb{R}^3 $ mit den Ortsvektoren $ \ \mathbf{r}_i $, $ i\in \{1,...,N\} $, deren Koordinaten durch $ s $ voneinander unabhängige (holonome) Zwangsbedingungen $ F_k $ der Form $ F_k (\mathbf{r}_1, \ldots ,\mathbf{r}_N,t)=0 $ mit $ k \in \{1, \ldots ,s\} $ eingeschränkt sind (wobei eine explizite Zeitabhängigkeit zugelassen wurde). Dadurch werden die Lagen der Teilchen auf eine $ (3N-s) $-dimensionale Mannigfaltigkeit eingeschränkt ($ f=3N-s $ ist die Anzahl der Freiheitsgrade).

Die Zwangskräfte $ \mathbf Z $ stehen senkrecht auf dieser Mannigfaltigkeit und können daher durch eine Linearkombination der Gradienten $ \nabla F_k $ dargestellt werden:

$ \mathbf Z = \sum_{i=1}^N \sum_{k=1}^s \lambda_k \nabla_i F_k $

Wenn man annimmt, dass sich die äußeren Kräfte aus einem Potential ableiten lassen, kann man die Bewegungsgleichung folgendermaßen schreiben (Lagrange-Gleichung 1. Art):[2]

$ m_i \ddot{\mathbf r}_i = - \nabla_i V + \sum_{k=1}^s \lambda_k \nabla_i F_k,\qquad i=1, \ldots ,N $

Die $ m_i $ sind die Massen der $ N $ Punktteilchen, $ V $ ist die potentielle Energie. Dies, zusammen mit den Zwangsbedingungen $ F_k(\mathbf{r}_1, \ldots, \mathbf{r}_N, t)=0 $, sind 3N+s unabhängige Gleichungen für die 3N Koordinaten der $ \mathbf r_i $ sowie für die s Lagrange-Multiplikatoren $ \lambda_k $. Somit ist die Lösung des Gleichungssystems eindeutig.

Bemerkung: Hier wurden nur holonome Zwangsbedingungen behandelt. Der Formalismus lässt sich aber auch auf Zwangsbedingungen der Form $ \sum_k a_k \delta q_k =0\, $ anwenden, die z. B. bei nicht-holonomen Zwangsbedingungen zwischen den Geschwindigkeiten der Teilchen folgen.[3] Diese Zwangsbedingungsgleichungen lassen sich im Gegensatz zu holonomen Zwangsbedingungen nicht als vollständiges Differential einer Funktion darstellen, das heißt zwischen den Koeffizientenfunktionen gilt nicht $ \tfrac{\partial a_i}{\partial q_k}=\tfrac{\partial a_k} {\partial q_i} $.

Im Fall von holonomen Zwangsbedingungen kann man neue Koordinaten $ q_i $ einführen, die diese implizit enthalten, sogenannte generalisierte Koordinaten. Mit der kinetischen Energie

$ T =\sum_i \frac {1}{2} m_i v_{i}^2 = \sum_i \frac {1}{2} m_i {\left( \sum_j \frac{\partial \mathbf r_{i}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial \mathbf r_{i}}{\partial t} \right)}^2 $

und Potentialkräften

$ Q_i = -\nabla_i V = -\frac{\partial V}{\partial q_{i}} $

(die auch durch generalisierte Koordinaten ausgedrückt sind und dann als generalisierte Kräfte bezeichnet werden – sie haben nicht unbedingt die Dimension einer Kraft) lassen sich die Bewegungsgleichungen auch schreiben

$ {\text{d}\over \text{d}t}{\partial{T}\over \partial{\dot{q}_i}}-{\partial{T}\over \partial q_i} = Q_i $

oder mit der Lagrange-Funktion $ L = T - V $ (Lagrange-Gleichung 2. Art):

$ {\text{d}\over \text{d}t}{\partial{L}\over \partial{\dot{q}_i}}-{\partial{L}\over \partial q_i} = 0 $

Treten wie in diesem Fall nur aus einem Potential ableitbare Kräfte (Potentialkräfte) auf, spricht man von konservativen Kräften.

Bemerkung: Manchmal lassen sich die generalisierten Kräfte durch ein geschwindigkeitsabhängiges generalisiertes Potential $ V(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t) $ in folgender Form schreiben

$ Q_{i}=-\frac{\partial V}{\partial q_{i}}+\frac{d}{dt}\frac{\partial V}{\partial\dot{q}_{i}} $

Auch dann ergeben sich die Bewegungsgleichungen

$ \frac{d}{dt}\frac{\partial L}{\partial \dot q_i}-\frac{\partial L}{\partial q_i}=0 $,

mit der Lagrange-Funktion $ L $:

$ L(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t)=T(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t)-V(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t) $

Das System ist dann aber nicht mehr im üblichen Sinn konservativ. Ein Beispiel ist der Fall des elektromagnetischen Feldes (siehe unten).

Manchmal hat man aber noch nicht-konservative Kräfte $ Q_i^* $, so dass sich die Gleichungen schreiben:

$ {\text{d}\over \text{d}t}{\partial{L}\over \partial{\dot{q}_i}}-{\partial{L}\over \partial q_i} = Q_i^* $

Ein Beispiel sind Systeme mit nicht-holonomen Zwangsbedingungen (siehe oben) oder Reibungskräfte.

Ableitung aus dem Hamiltonschen Prinzip

Die Lagrange-Gleichungen zweiter Art ergeben sich als sogenannte Euler-Lagrange-Gleichungen[4] eines Variationsproblems und liefern die Bewegungsgleichungen, wenn die Lagrange-Funktion gegeben ist. Sie folgen aus Variation des mit der Lagrange-Funktion gebildeten Wirkungsintegrals im Hamiltonschen Prinzip. Dazu betrachtet man alle möglichen Bahnkurven $ q (t) $ im Raum der generalisierten Koordinaten zwischen festen Anfangs- und Endpunkten. Man betrachtet die Änderung des Wirkungsintegrals bei Variation der Bahnkurven

$ \, q \rightarrow q + \delta q $
$ \, \dot q \rightarrow \dot q + \delta \dot q $

Das hamiltonsche Prinzip besagt, dass für die klassische Bahn das Wirkungsintegral stationär unter Variation der Bahnkurven ist:

$ \delta W = W(q+\delta q, \dot q+ \delta \dot q, t)-W(q, \dot q, t)=\delta \int \text{d}t L(q,\dot q, t) = \int \text{d}t (L (q + \delta q, \dot q + \delta \dot q, t) - L(q,\dot q, t))\stackrel{!}{=}0\,. $

Eine Näherung in erster Ordnung lautet für eine gewöhnliche Funktion f(x,y)

$ f(x + \text{d}x, y + \text{d}y) \approx f + \frac{\partial f}{\partial x}\text{d}x + \frac{\partial f}{\partial y}\text{d}y $

also

$ \text{d}f = f(x + \text{d}x , y + \text{d}y) - f(x,y) = \frac{\partial f}{\partial x}\text{d}x + \frac{\partial f}{\partial y}\text{d}y $.

In erster Ordnung ergibt sich die Variation des Integrals also zu

$ \int \text{d}t \left(\frac{\partial L}{\partial q}\delta q + \frac{\partial L}{\partial \dot q}\delta \dot q \right) = \int \text{d}t \left(\frac{\partial L}{\partial q}\delta q + \frac{\partial L}{\partial \dot q} \frac{\text{d}}{\text{d}t} \delta q \right) $

Nun führt man eine partielle Integration in dem Term aus, der die Ableitung nach der Zeit enthält:

$ \int_{t_1}^{t_2} \text{d}t \left(\frac{\partial L}{\partial \dot q} \frac{\text{d}}{\text{d}t} \delta q \right) = \left[\frac{\partial L}{\partial \dot q}\delta q\right]_{t_1}^{t_2} - \int_{t_1}^{t_2} \text{d}t \left( \delta q \frac{\text{d}}{\text{d}t} \frac{\partial L}{\partial \dot q} \right) $.

Hierbei wird benutzt, dass

$ \,\delta q(t_1) = \delta q(t_2) = 0 $

ist, da Anfangs- und Endpunkt festgehalten werden. Daher gilt für die Randterme

$ \left[\frac{\partial L}{\partial \dot q}\delta q\right]_{t_1}^{t_2} = 0 $

Damit resultiert schließlich

$ \int \text{d}t \left(-\frac{\text{d}}{\text{d}t} \frac{\partial L}{\partial \dot q} + \frac{\partial L}{\partial q} \right)\delta q\stackrel{!}{=} 0\,. $

Da nun $ \delta q $ als Faktor des gesamten Integrals auftritt und beliebig ist, kann das Integral nur dann nach dem Variationsprinzip verschwinden, wenn der Integrand selbst verschwindet. Es folgen die Lagrange-Gleichungen oder Lagrange-Gleichungen zweiter Art (die Euler-Lagrange-Gleichungen des hier betrachteten Variationsproblems):

$ \frac{\text{d}}{\text{d}t} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial{L}}{\partial q_i} = 0\,. $

Für jede generalisierte Koordinate $ q_i $ (und die zugehörige generalisierte Geschwindigkeit $ \dot{q}_i $) gibt es eine solche Gleichung. Die Lagrange-Gleichungen bilden ein System gewöhnlicher Differentialgleichungen zweiter Ordnung bezüglich der Zeitableitung. Wie viele Differentialgleichungen das im Endeffekt sind, weiß man erst, wenn die Zahl der Freiheitsgrade des "Systems" berechnet wurden.

Zyklische Variablen und Symmetrie

Wenn die Lagrange-Funktion $ L $ nicht von einer Koordinate $ q $ abhängt, sondern nur von der zugehörigen Geschwindigkeit $ \dot{q}\,, $ dann nennt man $ q $ zyklisch, zyklische Koordinate oder zyklische Variable. Der zur zyklischen Variablen $ q $ konjugierte Impuls

$ p= \frac{\partial L}{\partial \dot{q}} $

ist eine Erhaltungsgröße: ihr Wert ändert sich nicht während der Bewegung, wie gleich gezeigt wird. Wenn die Lagrange-Funktion nicht von $ q $ abhängt, gilt

$ \frac{\partial{L}}{\partial q} = 0\,. $

Dann folgt aber aus der Euler-Lagrange-Gleichung, dass die Zeitableitung des zugehörigen konjugierten Impulses verschwindet und er somit zeitlich konstant ist:

$ \frac{\mathrm d}{\mathrm dt} \frac{\partial L}{\partial \dot{q}} = 0\,, $

Allgemeiner gehört nach dem Noether-Theorem zu jeder kontinuierlichen Symmetrie der Wirkung eine Erhaltungsgröße. Bei einer zyklischen Variablen ist die Wirkung invariant unter der Verschiebung von $ q $ um eine beliebige Konstante, $ q\rightarrow q+c\,. $

Erweiterung auf Felder

In der Feldtheorie ergibt sich die Bewegungsgleichung aus dem Hamiltonschen Prinzip für Felder zu

$ \frac{\partial \mathcal{L}}{\partial \phi_i} - \sum_{j=1}^3 \frac{d}{dx_j} \frac{\partial \mathcal{L}}{\partial\frac{\partial \phi_i}{\partial x_j} }- \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial\frac{\partial \phi_i}{\partial t}} = \frac{\partial\mathcal L}{\partial\phi_i} - {\partial_\mu} \left(\frac{\partial\mathcal L}{\partial (\partial_\mu \phi_i )} \right) = 0 $

wobei $ \phi=\phi(x,y,z,t) $ das betrachtete Feld und $ \mathcal{L}=\mathcal{L}\left(\phi, \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}, \frac{\partial \phi}{\partial t}, x,y,z,t \right) $ die Lagrange-Dichte sind.

Man kann dies in Kurzform auch schreiben als

$ \frac{\delta \mathcal L}{\delta\phi}\equiv 0\,, $

mit der so definierten Variationsableitung   $ \frac{\delta\mathcal L}{\delta \phi}:=\frac{\partial\mathcal L}{\partial\phi_i} - {\partial_\mu} \left(\frac{\partial\mathcal L}{\partial (\partial_\mu \phi_i )} \right) $.

Der Lagrange-Formalismus ist auch der Ausgangspunkt vieler Formulierungen der Quantenfeldtheorie.

Relativistische Mechanik

In der relativistischen Mechanik kann die Lagrange-Funktion eines freien Teilchens aus dem Hamiltonschen Prinzip abgeleitet werden, indem für die Wirkung der einfachste Fall eines relativistischen Skalars angenommen wird:

$ S = -m_{0} c \int_{a}^{b}\mathrm d s =- m_{0} c^2 \int \mathrm dt \sqrt{1 - \frac{v^2}{c^2}}= \int L\, \mathrm dt $

wobei $ \mathrm d s = c \,\mathrm d\tau =c \, \mathrm dt \sqrt{1 - \frac{v^2}{c^2}} $ das zur Eigenzeit proportionale relativistische Linienelement ist und ein konstanter Faktor $ \,( - m_{0} c) $ gewählt wurde.

Die Lagrange-Funktion eines freien Teilchens ist hier nicht mehr mit der kinetischen Energie identisch (manchmal spricht man deshalb auch von kinetischer Ergänzungsenergie T in der Lagrange-Funktion). Die relativistische kinetische Energie eines Körpers mit der Ruhemasse $ m_0 $ und Geschwindigkeit $ v= \dot{\mathbf{x}} $ ohne Zwangsbedingungen beträgt

$ E=\frac{m_{0}c^{2}}{\sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}}\,}-m_{0}c^{2} $

während für die Lagrange-Funktion die kinetische Ergänzungsenergie

$ T(\mathbf{x},\dot{\mathbf{x}},t)=-m_{0}c^{2}\sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}} $

maßgeblich ist. Die Lagrange-Funktion für ein Teilchen in einem Potential V ergibt sich dann zu

$ L(\mathbf{x},\dot{\mathbf{x}},t)=T-V=-m_{0}c^{2}\sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}}\,-\, V(\mathbf{x},\dot{\mathbf{x}},t) $

Für ein $ N $-Teilchensystem ist die Lagrange-Funktion mit den generalisierten Koordinaten

$ L(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t)=-\sum_{i=1}^{N}m_{0,i}c^{2}\sqrt{1-\frac{\dot{\mathbf{x}}_{i}^{2}(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t)}{c^{2}}}\,-\, V(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t) $

wobei $ n=3N-s $ die Anzahl der Freiheitsgrade und $ s $ die Anzahl der holonomen Zwangsbedingungen ist.

Für kleine Geschwindigkeiten $ |\dot{\mathbf{x}}|\ll c $ kann man die Wurzel bis zur ersten Ordnung entwickeln $ \sqrt{1-x}=1-x/2 $:

$ -m_{0}c^{2}\sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}}=-m_{0}c^{2}+\frac{m_{0}}{2}\dot{\mathbf{x}}^{2} $

Die nullte Ordnung der Entwicklung ist eine Konstante, die negative Ruheenergie. Da die Lagrange-Gleichungen invariant sind unter Addition einer Konstanten zur Lagrange-Funktion, kann man den konstanten ersten Term vernachlässigen und man erhält wieder die klassische kinetische Energie:

$ L(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t)=\sum_{i=1}^{N}\frac{m_{0,i}}{2}\dot{\mathbf{x}}_{i}^{2}(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t)\,-\, V(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t) $
$ L(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t)=T(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t)\,-\, V(q_{1},\ldots,q_{n},\dot{q}_{1},\ldots,\dot{q}_{n},t) $

Zusammenhang mit Pfadintegralen in der Quantenmechanik

Richard Feynman hat als Erster diese Herangehensweise auch konsequent für die Herleitung der Gleichungen der Quantenmechanik verwendet. In der klassischen Physik ergeben sich die oben beschriebenen Lagrange-Gleichungen aus der Forderung, dass das Wirkungsintegral stationär wird. In Feynmans Pfadintegral-Formalismus ist die quantenmechanische Wahrscheinlichkeitsamplitude, dass ein System zwischen Anfangs- und Endbedingungen einen bestimmten Pfad einschlägt, proportional $ e^{\frac{i W} {\hbar}} $ mit dem Wirkungsintegral $ W $. Pfade in der Umgebung des klassischen Weges, für den die Variation von $ W $ verschwindet, liefern dabei meist die Hauptbeiträge, da sich in ihrer Umgebung die Beiträge mit fast gleichen Phasenfaktoren addieren.

Beispiele

Masse im harmonischen Potential (konservativ)

Schwingungssystem: x ist die Auslenkung aus der Gleichgewichtslage

Eine Masse $ m $ sei über zwei Federn mit Federkonstante $ c $ und festen Randbedingungen verbunden. Grundvoraussetzung zur Beschreibung des Problems im Lagrange-Formalismus ist das Aufstellen der Lagrange-Funktion, indem man die Terme für kinetische Energie $ T $ und potentielle Energie $ V $ aufstellt:

$ T = \frac{1}{2}m\dot{x}^2 $
$ V = \frac{1}{2}cx^2 $

Die Lagrange-Funktion lautet daher:

$ L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}cx^2 $

Die Lagrange-Funktion wiederum wird zur analytischen Beschreibung des physikalischen Problems in die Euler-Lagrange-Gleichung eingesetzt, was dann auf Gleichungen führt, die den Bewegungsgleichungen in der Newtonschen Mechanik entsprechen. In diesem Beispiel lautet die generalisierte Koordinate $ x $, die Euler-Lagrange-Gleichung

$ {\mathrm{d}\over \mathrm{d}t}{\partial{L}\over \partial{\dot{x}}}={\partial{L}\over \partial x} $

und daraus dann

$ \ \frac{\mathrm{d}}{\mathrm{d}t}\left(m\dot{x}\right)=-c x $

führen auf die Bewegungsgleichung des Systems:

$ \ddot{x} = -\frac{c}{m} x $.

Die allgemeine Lösung dieser Differentialgleichung ist $ x(t)=A\cos(\omega t + \varphi) $, $ t $ ist die Zeit, $ \omega=\sqrt{c/m} $ die Kreisfrequenz. Die konstante Amplitude $ A $ und Phase $ \varphi $ können aus den Anfangsbedingungen bestimmt werden.

Ladung im elektromagnetischen Feld (nicht-konservativ)

Eine Punktladung $ q $ mit Masse $ m $ bewege sich im elektromagnetischen Feld. Die generalisierten Koordinaten entsprechen den kartesischen Koordinaten in 3 Raumdimensionen.

Die Felder (Magnetfeld $ \mathbf{B} $ und elektrisches Feld $ \mathbf{E} $) werden über das Skalarpotential $ \phi $ und das Vektorpotential $ \mathbf{A} $ bestimmt:

$ \mathbf{B}(\mathbf{x},t)=\nabla\times\mathbf{A}(\mathbf{x},t)\ ,\quad\mathbf{E}(\mathbf{x},t)=-\frac{\partial\mathbf{A}(\mathbf{x},t)}{\partial t}-\nabla\phi(\mathbf{x},t) $

Die kinetische Energie des Teilchens ist klassisch:

$ T(\dot{\mathbf{x}})=\frac{1}{2}m\dot{\mathbf{x}}^{2} $

Das „Potential“ ist hier allerdings geschwindigkeitsabhängig, man spricht deshalb wie oben dargestellt von einem generalisierten Potential:

$ V(\mathbf{x},\dot{\mathbf{x}},t)=q\left(\phi(\mathbf{x},t)-\dot{\mathbf{x}}\cdot\mathbf{A}(\mathbf{x},t)\right) $

Somit ist die Lagrange-Funktion eines geladenen Teilchens im elektromagnetischen Feld:

$ L(\mathbf{x},\dot{\mathbf{x}},t)=\frac{1}{2}\, m\,\dot{\mathbf{x}}^{2}-q\,\phi(\mathbf{x},t)+q\,\dot{\mathbf{x}}\cdot\mathbf{A}(\mathbf{x},t) $

Die Euler-Lagrange-Gleichungen $ \frac{d}{dt}\nabla_{\dot{\mathbf{x}}}L-\nabla_{\mathbf{x}}L=0 $ führt auf die Bewegungsgleichung, auf deren rechter Seite die Lorentzkraft steht:

$ m\,\ddot{\mathbf{x}}=q\,\dot{\mathbf{x}}\times\left(\nabla\times\mathbf{A}(\mathbf{x},t)\right)-q\,\frac{\partial}{\partial t}\mathbf{A}(\mathbf{x},t)-q\,\nabla\phi(\mathbf{x},t) $

Masse an Trommel (nicht-konservativ)

Datei:Aufzug lg.png
Schema eines Aufzuges

Die Achse einer Aufzugtrommel wird durch ein Drehmoment M angetrieben. Die Masse der Last beträgt m, das Massenträgheitsmoment der Trommel ist J. Der Radius der Trommel ist r.

Zwischen den Koordinaten x und φ besteht folgende Beziehung:

$ x = r \varphi $

$ \Rightarrow \;\dot{x} = r \dot{\varphi} $

$ \Rightarrow \;\delta x = r \delta \varphi $

Die kinetische Energie ist:

$ T = \frac{1}{2} \left( m \dot{x}^2 + J \dot{\varphi}^2 \right) = \frac{1}{2} \left( m r^2 + J \right)\ \dot{\varphi}^2 $

Die virtuelle Arbeit der eingeprägten Kräfte ist

$ \delta W = -mg\,\delta x + M\,\delta \varphi = (-mgr + M)\,\delta \varphi $

$ \Rightarrow \;Q = -mgr + M $

Daraus folgt schließlich die Bewegungsgleichung

$ \left( m r^2 + J \right) \ddot{\varphi} = -mgr + M $

Die Auflösung dieser Gleichung nach der Winkelbeschleunigung ergibt

$ \ddot {\varphi}=\frac{-mgr + M}{ m r^2 + J } $

Atwoodsche Fallmaschine (Methode erster Art)

Funktionsschema der Fallmaschine
Hauptartikel: Atwoodsche Fallmaschine

Bei der Atwoodschen Fallmaschine betrachtet man zwei Punktmassen im Gravitationsfeld der Erde, die über eine Rolle in der Höhe h aufgehängt und durch ein Seil der Länge l verbunden seien. Die Zwangsbedingung lautet in diesem Fall:

$ \, F:=y_1 + y_2 + l - 2h = 0 $

Wird das Seil berücksichtigt, das auf der Rolle (Rollenradius r) liegt, dann ergibt sich:

$ F:=y_1 + y_2 + l - 2h - \pi\ r = 0 $

Die potentielle Energie V berechnet sich zu:

$ V := m_1 g y_1 + m_2 g y_2 $

Für die Gradienten erhält man

$ \frac{\partial F}{\partial y_1 } = 1,\qquad \frac{\partial F}{\partial y_2 } = 1 $
$ \frac{\partial V}{\partial y_1 } = m_1 g,\qquad \frac{\partial V}{\partial y_2 } = m_2 g $

Dies führt auf das System der Lagrange-Gleichungen 1. Art:

$ \begin{matrix} m_1 \ddot y_1 &=& - m_1 g + \lambda\\ m_2 \ddot y_2 &=& - m_2 g + \lambda\\ y_1 + y_2 + l - 2h &=& 0 \end{matrix} $

Dies kann man auflösen und erhält z. B. für bekannte Anfangsbedingungen:

$ \begin{matrix}y_1(t) &=& \frac {1}{2}{m_2 - m_1 \over {m_1 + m_2}} g t^2 + \dot y_{1,0}t + y_{1,0}\\ \lambda &=& 2 g \frac{m_1 m_2}{m_1 + m_2}\end{matrix} $

Teilchen im freien Fall (allgemeine Relativitätstheorie)

In der allgemeinen Relativitätstheorie durchlaufen frei fallende Teilchen Weltlinien längster Zeit: zwischen zwei (genügend nah beieinander liegenden) Ereignissen $ A $ und $ B $ vergeht auf einer mitgeführten Uhr auf der Weltlinie frei fallender Teilchen mehr Zeit, als auf allen anderen Weltlinien durch diese Ereignisse. Sei $ s $ ein entlang des Pfades monoton wachsender Laufparameter, so ergibt sich die verstrichene Zeit zu

$ \tau_{AB} = \int_{\underline{s}}^{\overline{s}}L\left(s, x(s), \frac{\mathrm dx}{\mathrm ds}\right)\,\mathrm d s\ ,\ x(\underline{s}) = A\,,\ x(\overline{s}) = B\,, $

mit der Lagrange-Funktion

$ L(s,x,\dot{x}) = \sqrt{g_{mn}(x)\, \dot{x}^m \,\dot{x}^n}\,. $

Dabei sind $ g_{mn}(x) $ die Komponentenfunktionen der Metrik (sowohl Raum- als auch Zeitkomponenten). Wir rechnen einfachheitshalber in Maßsystemen, in denen die Lichtgeschwindigkeit dimensionslos ist und den Wert $ c=1 $ hat, und verwenden die Einsteinsche Summenkonvention.

Der zu $ x^k $ konjugierte Impuls ist

$ \frac{\partial L}{\partial \dot{x}^k}=\frac{g_{kl}\,\dot{x}^l}{\sqrt{g_{mn}\,\dot{x}^m \,\dot{x}^n}} $

und die Euler-Lagrange-Gleichungen lauten

$ 0=\frac{\mathrm d }{\mathrm ds} \frac{g_{kl}\,\dot{x}^l}{\sqrt{g_{mn}\,\dot{x}^m\,\dot{x}^n}} - \frac{1}{2} \frac{\partial_k g_{rs}\,\dot{x}^r\,\dot{x}^s}{\sqrt{g_{mn}\,\dot{x}^m \,\dot{x}^n}} $
$ \qquad\qquad =g_{kl}\,\frac{\mathrm d }{\mathrm ds} \frac{\dot{x}^l}{\sqrt{g_{mn}\,\dot{x}^m\,\dot{x}^n}} + \frac{\dot{x}^r\,\partial_r g_{ks}\,\dot{x}^s}{\sqrt{g_{mn}\,\dot{x}^m \,\dot{x}^n}} - \frac{1}{2} \frac{\partial_k g_{rs}\,\dot{x}^r\,\dot{x}^s}{\sqrt{g_{mn}\,\dot{x}^m \,\dot{x}^n}}\,. $

Verwenden wir hier als Abkürzung das Christoffel-Symbol

$ \Gamma_{rs}{}^l = \frac{1}{2}g^{lm}\bigl(\partial_r g_{sm}+\partial_s g_{rm}-\partial_m g_{rs}\bigr)\,, $

so erweist sich die Weltlinie längster Dauer als Gerade: die Richtung der Tangente an die Weltlinie

$ u^l = \frac{\dot{x}^l}{\sqrt{g_{mn}\,\dot{x}^m \,\dot{x}^n}} $

ändert sich nicht bei Parallelverschiebung längs der Weltlinie

$ 0=g_{kl}\left(\frac{\mathrm d }{\mathrm ds} u^l + \dot{x}^r\, \Gamma_{rs}{}^l\,u^s\right)\,. $

Die Parametrisierung wird nicht festgelegt. Verfügen wir so über sie, dass der Tangentialvektor überall gleich lang ist, dann ist $ \sqrt{g_{mn}\,\dot{x}^m \,\dot{x}^n} $ konstant und der Tangentialvektor geht beim Durchlaufen der Weltlinie in sich über. Sie erfüllt die Geodätengleichung

$ 0=\frac{\mathrm d^2 x^l }{\mathrm ds^2} + \Gamma_{rs}{}^l(x)\, \frac{\mathrm d x^r}{\mathrm d s}\,\frac{\mathrm d x^s}{\mathrm d s}\,. $

Dies ist die allgemein-relativistische Form der Bewegungsgleichung eines frei fallenden Teilchens. Die Gravitation ist in den $ \Gamma_{rs}{}^l $ voll berücksichtigt.

Literatur

Der Lagrange-Formalismus wird in vielen ein- und weiterführenden Lehrbüchern der klassischen Mechanik behandelt.

Literatur zu Pfadintegralen.

Weblinks

Anmerkungen

  1. Landau, Lifschitz: Lehrbuch der theoretischen Physik I – Mechanik. Akademie-Verlag Berlin 1987, S. 156.
  2. Zum Beispiel Hamel Theoretische Mechanik, Springer Verlag 1967, S.281
  3. Die realen anholonomen Zwangsbedingungen wären $ \sum_k a_k d q_k + a_t dt =0\,. $ Das Zeitdifferential dt verschwindet per definitionem bei den zugehörigen sog. virtuellen Verschiebungen $ \delta q_k $
  4. Siehe Variationsrechnung. Dort ergeben sich die Euler-Lagrange-Gleichungen aus der Variation eines Funktionals. In der Mechanik ist das betrachtete Funktional die Wirkungsfunktion und man spricht von Lagrange-Gleichung.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.