Ladungsdichte

Ladungsdichte

Der Titel dieses Artikels ist mehrdeutig. Der Begriff Ladungsverteilung leitet auf diesen Artikel weiter. Für die Verwendung von Ladungsverteilungen in der Mathematik siehe Signiertes Maß.
Physikalische Größe
Name Raumladungsdichte
Formelzeichen $ \rho $
Größen- und
Einheitensystem
Einheit Dimension
SI A·s·m−3 T·L−3
Gauß (cgs) Fr·cm−3 M1/2 · L−3/2 · T−1
esE (cgs) Fr·cm−3 M1/2 · L−3/2 · T−1
emE (cgs) abC·cm−3 L−5/2·M1/2
Physikalische Größe
Name Flächenladungsdichte
Formelzeichen $ \sigma $
Größen- und
Einheitensystem
Einheit Dimension
SI A·s·m−2 T·L−2
Gauß (cgs) Fr·cm−2 M1/2 · L−1/2 · T−1
esE (cgs) Fr·cm−2 M1/2 · L−1/2 · T−1
emE (cgs) abC·cm−2 L−3/2·M1/2
Physikalische Größe
Name Linienladungsdichte
Formelzeichen $ \lambda $
Größen- und
Einheitensystem
Einheit Dimension
SI A·s·m−1 T·L−1
Gauß (cgs) Fr·cm−1 M1/2 · L1/2 · T−1
esE (cgs) Fr·cm−1 M1/2 · L1/2 · T−1
emE (cgs) abC·cm−1 L−1/2·M1/2

Die elektrische Ladungsdichte ist eine physikalische Größe aus der Elektrodynamik, die eine Ladungsverteilung beschreibt. Da es sowohl positive als auch negative Ladungen gibt, sind für die Ladungsdichte ebenfalls sowohl positive als auch negative Werte möglich.

Da Ladungen auch an Oberflächen oder etwa entlang eines dünnen Drahtes verteilt sein können, kann die Ladungsdichte durch folgende Größen beschrieben werden:

  • die Ladung pro Volumen (Raumladungsdichte), übliches Symbol  ρ (rho)
  • die Ladung pro Fläche (Oberflächenladungsdichte), übliches Symbol σ (sigma)
  • die Ladung pro Länge (Linienladungsdichte), übliches Symbol λ (lambda).

Begrenzung der Oberflächenladungsdichte

Die erreichbare Oberflächenladungsdichte wird durch Koronaentladung in die umgebende Luft begrenzt, wenn die maximale Feldstärke von etwa 105 V/m überschritten wird:

$ \sigma_\mathrm{max} = 2\cdot E_\mathrm{max} \cdot \varepsilon_0 \cdot \varepsilon_r \approx 1{,}8 \cdot 10^{-6} \mathrm{As/m^2}. $

Damit trägt jeder negativ geladene Quadratzentimeter die Überschussladung 1,8·10−10 As, was 1,1·109 frei beweglichen Elektronen entspricht. Etwa eine Million mal mehr Elektronen sind an die Atomrümpfe der Metalloberfläche gebunden (Siehe auch Influenz#Anzahl der beteiligten Elektronen).

Die Oberflächenladungsdichte auf der rechten Hälfte der Metallkugel ist negativ, weil die Elektronen aufgrund der Abstoßung durch die links eingezeichnete negative Ladung dorthin ausweichen; auf der linken Halbkugel ist die Oberflächenladungsdichte positiv, da dort nun Elektronen fehlen.

Ähnliche Größen

Eine mit der Oberflächenladungsdichte σ korrespondierende Größe ist die elektrische Flussdichte $ \vec D $ (auch elektrische Erregung, dielektrische Verschiebung oder Verschiebungsdichte genannt), ein senkrecht auf der betreffenden Fläche stehender Vektor. Dagegen ist σ ein Skalar (und unter bestimmten Umständen gleich dem Betrag $ |\vec D| $).

Nicht mit der Ladungsdichte zu verwechseln sind außerdem die Ladungsträgerdichte, also die Anzahl der Protonen, Elektronen usw. pro Raum-, Flächen- oder Längeneinheit sowie die in der Dichtefunktionaltheorie berechnete Elektronendichte.

Definition

Die Definition der Raumladungsdichte ähnelt der der Massendichte:

$ \rho(\vec r) = \frac{\mathrm d Q}{\mathrm d V} \quad \Leftrightarrow \quad Q = \int_V \rho(\vec r)\, \mathrm d V $,

wobei Q die elektrische Ladung und V das Volumen ist.

Bei der Flächen- und der Linienladungsdichte wird entsprechend nach der Fläche $ A $ bzw. nach der Länge $ l $ abgeleitet:

$ \sigma(\vec r) = \frac{\mathrm d Q}{\mathrm d A} \quad \Leftrightarrow \quad Q = \int_A \sigma(\vec r)\, \mathrm d A $
$ \lambda(\vec r) = \frac{\mathrm d Q}{\mathrm d l} \quad \Leftrightarrow \quad Q = \int_l \lambda(\vec r)\, \mathrm d l. $

Diskrete Ladungsverteilung

Besteht die Ladung in einem Volumen aus $ N $ diskreten Ladungsträgern (wie z. B. Elektronen), so kann die Ladungsdichte mit Hilfe der Delta-Distribution ausgedrückt werden:

$ \rho(\vec r) = \sum_{i=1}^N q_i \cdot \delta(\vec r - \vec r_i) $

mit

  • der Ladung $ q_i $ und
  • dem Ort $ \vec r_i $ des $ i $-ten Ladungsträgers.

Tragen alle Ladungsträger die gleiche Ladung $ q $ (bei Elektronen gleich der negativen Elementarladung: $ q = -e $), so kann man obige Formel mit Hilfe der Ladungsträgerdichte $ n(\vec r) $ vereinfachen:

$ \begin{align} \rho(\vec r) & = q \cdot \sum_{i=1}^N \delta(\vec r - \vec r_i)\\ & = q \cdot n(\vec r). \end{align} $

Elektrisches Potential

Das elektrische Potential hängt gemäß der Poisson-Gleichung der Elektrostatik

$ \Delta \Phi(\vec r) = -\frac{\rho(\vec r)}{\varepsilon} $

nur von der Ladungsdichte ab. Hierbei bezeichnet $ \varepsilon $ die Permittivität.

Point of zero charge

Der Point of zero charge (PZC) (dt. Punkt der Ladung null) ist erreicht, wenn die Ladungsdichte einer Oberfläche null beträgt. Dieses Konzept stammt aus der physikalischen Chemie und ist relevant für die Adsorption von Stoffen oder Partikeln an Oberflächen.

Für Partikel in Suspension ist der PZC der Punkt, an dem das Zeta-Potential null ist. Das kann beispielsweise für einen bestimmten pH-Wert der Fall sein. Abseits des PZC sind die Partikel geladen, stoßen einander daher elektrisch ab und neigen so weniger dazu, sich zu Flocken oder Aggregaten zusammen zu ballen. Die fehlende Ladung am PZC führt auch zu einer Verminderung der Löslichkeit/Hydratation in Wasser.

Die Kenntnis des PZC ist nützlich, um die Mobilität von gelösten Stoffen oder Partikeln einzuschätzen, was unter anderem für die Risikobewertung von Schadstoffen eine Rolle spielen kann.

Ein ähnliches Konzept ist der isoelektrische Punkt.es:Carga eléctrica#Densidad de carga eléctrica


Diese Artikel könnten dir auch gefallen



Die letzten News


11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.