Koinzidenzmessung

Koinzidenzmessung

Der Begriff Koinzidenz kommt aus dem Mittellateinischen (co/con ‚zusammen‘ + in ‚hinein‘ + cadere/cidere ‚fallen‘ bzw. zusammen in (einen Punkt) fallen) und bedeutet allgemein das Zusammentreffen von Ereignissen innerhalb einer bestimmten, vorgegebenen Zeitspanne. In der Messtechnik, insbesondere auf den Gebieten Atom-, Kern- und Teilchenphysik, kommt das Prinzip der Koinzidenzmessung mit einer Schaltung mit mindestens zwei Eingängen zur Anwendung, bei der nur beim gleichzeitigen Auftreten von Impulsen an allen Eingängen ein Ausgangssignal entsteht.

Geschichte

Erste Anwendung

Jean Jacques d’Ortous de Mairan (1678–1771) erfand bei Pendelmessungen die Koinzidenzmethode, die später von Jean Charles Borda verbessert wurde.

Rückstoßelektron und gestreute Photonen beim Compton-Effekt

Datei:Koinzidenzmessung.png
Koinzidenzmessung; Versuchsanordnung von Bothe und Geiger

Walther Bothe und Hans Geiger wandten eine Koinzidenzmethode in der Atomphysik an, um das gleichzeitige Auftreten des Rückstoßelektrons und des gestreuten Photons beim Compton-Effekt nachzuweisen. Zu diesem Experiment, das sie 1924/25 durchführten, lenkten sie ein schmales Bündel Röntgenstrahlen zwischen zwei Spitzenzähler (Vorläufer der Geiger-Müller-Zählrohre), die sich in einer Wasserstoffatmosphäre befanden. Wasserstoff absorbiert die Röntgenstrahlen nur schwach, streut sie aber stark. Ein Zählrohr, das Zählrohr 1, blieb offen und dadurch mit Wasserstoff gefüllt. Das andere Zählrohr, das Zählrohr 2, war mit einer Platinfolie abgedeckt und der Innenraum war mit Luft gefüllt. Da die Platinfolie die Rückstoßelektronen absorbiert, sprach das luftgefüllte Zählrohr 2 nicht auf Elektronen an. Die Photonen durchdrangen die Folie und lösten dabei aus der Luft, den Wänden des Zählrohrs und der Folie selbst Photoelektronen, die durch das Zählrohr 2 registriert wurden. Das offene Zählrohr 1 registrierte fast keine Photonen, da sie nur wenig vom Wasserstoff absorbiert werden. Die Rückstoßelektronen werden dagegen gemessen. Da das zweite Zählrohr nicht jedes ankommende Photon registriert, entspricht nicht jedem Ansprechen des mit dem ersten Zählrohr verbundenen Elektrometers ein Ausschlag des zweiten Elektrometers. Wenn jedoch eine Koinzidenz von Rückstoßelektron und Photon stattfindet, muss jedem Ausschlag des Photonenzählrohrs ein Ausschlag des Elektronenzählrohrs entsprechen. Bei diesem Versuch wurde keine vollständige Übereinstimmung gemessen, die statistische Auswertung ergab aber eine Anzahl von Koinzidenzen von 150.000 gegen 1, was beweist, dass diese Übereinstimmungen nicht zufällig sind, sondern die Gleichzeitigkeit von Streuung und Erzeugung eines Rückstoßelektrons nachweist.

Das Verdienst bei der Entwicklung der Koinzidenzmessung liegt darin, dass Bothe und Geiger eine elektronische Registrierung des Ansprechens der Zählrohre einsetzten, die Zahl der Koinzidenzereignisse also automatisch registrierten und damit das anstrengende visuelle Beobachten durch die Experimentatoren vermieden. Die Leistungsfähigkeit der Methode wird damit wesentlich gesteigert. Die Koinzidenzmessung entwickelte sich ganz allgemein zu einem wichtigen Untersuchungsprinzip bei der Erforschung der kosmischen Strahlen, in der Erforschung von Elementarteilchenprozessen und der Untersuchung des Compton-Effektes.

Kosmische Strahlung

Nachdem Victor Hess 1912 bei Ballonfahrten die Höhenstrahlung entdeckt hatte, erbrachten Walther Bothe und Werner Kolhörster 1929 mittels Koinzidenzmessungen den Beweis, dass diese durchdringende Strahlung ihren Ursprung außerhalb der Erde hat. Sie entwickelten die Technik, das Ansprechen von zwei oder mehr Geiger-Müller-Zählrohren nur dann anzeigen zu lassen, wenn die Ansprechzeitpunkte innerhalb eines vorbestimmten kurzen Zeitintervalls aufeinander folgten. Dies trat dann ein, wenn ein und dasselbe Teilchen alle Zählrohre durchlief. Die Apparatur konnte dadurch nur Strahlung aus bestimmten Richtungen registrieren. Es zeigte sich, dass die Teilchen bevorzugt senkrecht zur Erdoberfläche einfielen; die Einfallsintensität sank hingegen, wenn man die Apparatur gegen den Horizont neigte. Dies weist klar auf den außerirdischen Ursprung hin, da in diesem Fall die senkrecht einfallenden Teilchen den kürzesten Weg durch die Erdatmosphäre haben und so am wenigsten absorbiert werden.

Weitere Entwicklung

1954 erhielt Bothe für seine Arbeiten über die kosmische Strahlung mit dem Koinzidenzverfahren und über die Kernumwandlung zusammen mit Max Born den Nobelpreis für Physik.

Heute ist die Koinzidenzmessung ein wichtiges Untersuchungsmittel der kosmischen Strahlung und aller Arten von Kern- und Elementarteilchenprozessen. Die Zeitauflösung der Elektronik von Bothe und Geiger lag bei etwa 1 ms. Moderne Elektronik erlaubt Auflösungen unterhalb von 50 ps, so dass meist die Detektoren selbst der begrenzende Faktor sind.

Siehe auch

Literatur

  • Eduard W. Schpolski: Atomphysik. 1993
  • B. M. Jaworski, A. A. Detlaf: Wörterbuch der Physik.
  • Emilio Segre: Die großen Physiker und ihre Entdeckungen. 1997

Diese Artikel könnten dir auch gefallen



Die letzten News


23.01.2021
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
23.01.2021
Die Entstehung des Sonnensystems in zwei Schritten
W
23.01.2021
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
20.01.2021
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
20.01.2021
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
20.01.2021
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
Aufwändige und in diesem Umfang bis dahin noch nicht realisierte Computersimulationen zur Turbulenz in interstellaren Gas- und Molekülwolken haben wichtige neue Erkenntnisse zu der Frage gebracht, welche Rolle sie bei der Entstehung von Sternen spielt.
20.01.2021
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
25.12.2020
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.
25.12.2020
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.
25.12.2020
Skyrmionen – Grundlage für eine vollkommen neue Computerarchitektur?
Skyrmionen sind magnetische Objekte, von denen sich Forscher weltweit versprechen, mit ihnen die neuen Informationseinheiten für die Datenspeicher und Computerarchitektur der Zukunft gefunden zu haben.
25.12.2020
Mysterien in den Wolken: Große Tröpfchen begünstigen die Bildung kleinerer
Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) berichten die über ihre neuen Erkenntnisse, wie ausfallende große Regentropfen und Eispartikel das Wachstum von Aerosolen begünstigen können, um neue Kondensationskerne oder Eiskeimteilchen in Wolken zu erzeugen.
25.12.2020
Kollidierende Sterne offenbaren grundlegende Eigenschaften von Materie und Raumzeit
Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte den Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums.
25.12.2020
Endgültige Ergebnisse und Abschied vom GERDA-Experiment
Die Zeit des GERDA-Experiments zum Nachweis des neutrinolosen doppelten Betazerfalls geht zu Ende.