Karlovitz-Zahl

Karlovitz-Zahl

Physikalische Kennzahl
Name Karlovitz-Zahl
Formelzeichen $ \mathit{Ka} $
Dimension dimensionslos
Definition $ \mathit{Ka} = \frac{\tau_\mathrm{L}}{\tau_\mathrm{K}} $
$ \tau_\mathrm{L} $ Zeitskala für Ausbreitung der laminaren Flamme
$ \tau_\mathrm{K} $ kleinste turbulente Zeitskala
Benannt nach Béla Karlovitz
Anwendungsbereich turbulente Verbrennungsprozesse

Die Karlovitz-Zahl wird zur Beschreibung von turbulenten Verbrennungsprozessen verwendet und setzt sich aus dem Verhältnis der Zeitskala für die Ausbreitung der laminaren Flamme $ \tau_\mathrm{L} $ zur kleinsten turbulenten Zeitskala $ \tau_\mathrm{K} $ (Kolmogorov-Zeit) zusammen:

$ \mathit{Ka} = \frac{\tau_\mathrm{L}}{\tau_\mathrm{K}} $

Die laminare Flammen-Zeitskala $ \tau_\mathrm{L} $ wird dabei üblicherweise als diejenige Zeit definiert, die die laminare Flammenfront benötigt, um sich durch Flammenpropagation mit der laminaren Flammengeschwindigkeit $ s_\mathrm{L} $ um eine Strecke fortzubewegen, die gleich groß wie die laminare Flammenfrontdicke (inklusive ihrer Vorwärmschicht) $ l_\mathrm{L} $ ist. Sie lässt sich auch über das Verhältnis der Diffusionskonstante $ D $ zum Quadrat der laminaren Flammengeschwindigkeit beschreiben:[1][2]

$ \tau_\mathrm{L} = \frac{l_\mathrm{L}}{s_\mathrm{L}} = \frac{D}{s_\mathrm{L}^2} $

Falls $ \mathit{Ka}\ll 1 $, läuft die Wärme- und Stoffdiffusion innerhalb der Flammenfront viel schneller als alle Turbulenzzeitskalen ab. Somit werden die lokale Flammenstruktur und der Bereich der chemischen Reaktion nicht von Turbulenzen verändert, bzw. beeinflusst und es herrschen innerhalb der Flamme laminare Bedingungen. Die Flamme lässt sich in diesem Fall meist gut mit einem Flamelet-Ansatz beschreiben, bei dem angenommen wird, dass sich die Flammenfront in lokaler Näherung vollständig laminar verhält.

Falls $ \mathit{Ka} \ge 1 $, sind die kleinsten turbulenten Wirbel gleich groß oder kleiner als die Dicke der Vorwärmschicht in der Flammenfront. Dadurch kann es zu einem turbulenten Wärme- und Stofftransport innerhalb der Flammenfront kommen. Dieser führt sowohl zu einer Verbreiterung der Flammenfront als auch zu einer Erhöhung der turbulenten Flammengeschwindigkeit[3].

Die Namensgebung der dimensionslosen Kennzahl bezieht sich auf den ungarischen Physiker Béla Karlovitz.[4]

Zusammenhang mit anderen Größen

Nach obiger Definition der Karlovitz-Zahl lässt sich das Verhältnis auch über Längenskalen oder Geschwindigkeiten ausdrücken[1]:

$ \mathit{Ka} = \frac{l_\mathrm{L}^2}{\lambda_\mathrm{K}^2} = \frac{v_\mathrm{K}^2}{s_\mathrm{L}^2} $

Hierbei stehen $ \lambda_\mathrm{K} $ für die Kolmogorov-Länge (also der kleinsten Längenskala, die von der Turbulenz beeinflusst wird) und $ v_\mathrm{K} $ für die Kolmogorov-Geschwindigkeit (also der Umlaufgeschwindigkeit von Wirbeln mit dem Durchmesser der Kolmogorov-Länge).

Unter der Annahme, dass für die Schmidt-Zahl $ \mathit{Sc} \approx 1 $ gilt, dass also die kinematische Viskosität etwa gleich groß wie die stoffliche Diffusionskonstante ist, kann man die Karlovitz-Zahl, die Damköhler-Zahl $ \mathit{Da} $ und die Reynolds-Zahl $ \mathit{Re} $ näherungsweise in folgende Beziehung zueinander setzen:[1]

$ \mathit{Re} \approx \mathit{Da}^2 \mathit{Ka}^2 $

Alternative Definition

Ersetzt man in obiger Gleichung die laminare Flammen-Zeitskala durch die Reaktions-Zeitskala $ \tau_\mathrm{R} $, lässt sich eine Karlovitz-Zahl für den Einfluss der Turbulenz auf die Reaktionsschicht definieren:

$ \mathit{Ka}_\mathrm{R} := \frac{\tau_\mathrm{R}}{\tau_\mathrm{K}} $

Analog zur Definition der laminaren Flammen-Zeitskala beschreibt die Reaktions-Zeitskala diejenige Zeit, die die Flammenfront benötigt, um durch Flammenpropagation eine Strecke zurückzulegen, die gleich groß wie die Dicke der Reaktionsschicht $ l_\mathrm{R} $ ist. Die Reaktionsschicht ist derjenige Abschnitt innerhalb der Flammenfront, in dem die chemischen Reaktionen ablaufen. In einer laminaren Flammenfront ist die Reaktionsschicht erheblich dünner als die durch Stoff- und Wärmediffusion geprägte Vorwärmschicht. Das Größenverhältnis wird oft mit einem Faktor $ \delta\equiv\frac{l_\mathrm{R}}{l_\mathrm{L}} $ beschrieben. Es gilt also

$ \mathit{Ka}_\mathrm{R} = \frac{l_\mathrm{R}^2}{\lambda_\mathrm{K}^2} = \delta^2 \mathit{Ka} $.

Typischerweise ist $ \delta $ eine Zahl der Größenordnung $ O(10) $.

Analog zur obigen Beschreibung lässt sich hier feststellen:

Falls $ \mathit{Ka}_\mathrm{R}\ll 1 $, laufen die chemischen Reaktionen viel schneller als alle Turbulenzzeitskalen ab. Somit wird die interne Struktur der Reaktionsschicht nicht von Turbulenzen verändert, und es herrschen innerhalb der Reaktionsschicht laminare Bedingungen.

Falls $ \mathit{Ka}_\mathrm{R} \ge 1 $, sind die kleinsten turbulenten Wirbel gleich groß oder kleiner als die Dicke der Reaktionsschicht in der Flammenfront. Dadurch kann es rein theoretisch zu einer turbulenten Verbreiterung der Reaktionsschicht kommen. In extremen Fällen würde dies zu einer homogenen Verteilung der chemischen Reaktionen über ein makroskopisches Volumen führen (perfekter Rührreaktor). Viel wahrscheinlicher ist es allerdings, dass bei einer derart intensiven turbulenten Störung der Reaktionsschicht lokale Verlöschungen auftreten und die Flammenfront aufbricht oder sogar gänzlich erlischt.[1][3]

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 Norbert Peters: Turbulent Combustion. Cambridge University Press, 2000, S. 78–79.
  2. Jürgen Warnatz, Ulrich Maas, Robert Dibble: Combustion, Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 3rd Edition. Springer, 2001, S. 201–204.
  3. 3,0 3,1 Chung K. Law: Combustion Physics. Cambridge University Press, 2006, S. 496–500.
  4. Bernard Lewis: Address by Dr. Bernard Lewis, Remarks on Combustion Science In: Symposium (International) on Combustion Volume 7 (Issue 1), 1958, S. xxxi–xxxv.

Diese Artikel könnten dir auch gefallen



Die letzten News


06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
03.03.2021
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
03.03.2021
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.