Jeans-Kriterium

Jeans-Kriterium

Das Jeans-Kriterium der Sternentstehung (nach James Jeans), auch Jeanssches Kriterium, besagt, dass eine kosmische Gaswolke kollabiert und aus ihr letztlich ein Stern entstehen kann, wenn ihre Masse größer als die Jeans-Masse $ M_{\mathrm{Jeans}} $ ist. Handelt es sich bei der Gaswolke um eine protoplanetare Scheibe, so kann das Jeans-Kriterium auch für die Entstehung von Gasplaneten herangezogen werden.

Unter irdischen Bedingungen breiten sich Gase aufgrund der kinetische Energie der Moleküle und ihrer damit verbundenen Kollisionen in dem zur Verfügung stehenden Raum gleichmäßig aus. Im freien Weltall dagegen werden größere Ansammlungen von Gasen durch ihre Schwerkraft zusammengehalten und sind deswegen räumlich begrenzt. Nach Überschreiten der Jeans-Masse zieht sich die Wolke immer weiter zusammen, bis ein neuer Gleichgewichtszustand erreicht wird (Sternentstehung).

Berechnung bzw. Abschätzung der Jeans-Masse

Die Jeans-Masse als minimale Grenzmasse lässt sich abschätzen zu:

$ M_{\mathrm{Jeans}} =\alpha \cdot \sqrt{\frac{1}{\rho} \cdot \left( \frac{k T}{G \mu} \right)^3 } $

mit

  • einem numerischen Vorfaktor $ \alpha $, der von der Abschätzung und ihrer Genauigkeit abhängt
  • weiteren Variablen, die im Folgenden erläutert werden.
Kräfte bzw. Drücke in einer kosmischen Gaswolke

Es wird eine kugelförmige Gaswolke der Masse M, der homogenen Dichte $ \rho = \frac M{\tfrac{4}{3} \pi R^3} $, dem daraus zu berechnenden Radius R und der Temperatur T angenommen. Auf die Gaswolke wirken keine äußeren Kräfte, sie rotiert nicht, und das Gas verhält sich wie ein ideales Gas.

Die Wolke beginnt zu kollabieren, falls die kontrahierenden Gravitationskräfte größer sind als die stabilisierende Kraft des Gasdruckes (Jeans-Kriterium). Dieser Zustand ist erreicht, wenn die Masse der Gaswolke bei einer bestimmten Dichte und Temperatur die zugehörige Jeans-Masse überschreitet. Sie kann sowohl über das Gleichgewicht der Drücke als auch über das der Energien ermittelt werden.

über den Gleichgewichtsdruck

Bei Gleichgewicht der Drücke im Zentrum der Wolke gilt:

$ |p_{\mathrm{Gas}}| = |p_{\mathrm{grav}}| $

Aus der idealen Gasgleichung $ pV = nkT \Leftrightarrow p = \frac{\rho}{\mu}kT $ und dem Gravitationsdruck im Inneren einer Kugel folgt:

$ \Rightarrow \frac{\rho}{\mu}kT = \frac{3G M^2}{8\pi R^4} $

mit

Daraus ergibt sich[1]:

$ \Rightarrow M_{\mathrm{Jeans}} = \sqrt{\frac{6}{\pi}} \cdot \sqrt{\frac{1}{\rho} \cdot \left( \frac{k T}{G \mu} \right)^3} $

Der numerische Vorfaktor ist hier $ \alpha = \sqrt{\frac{6}{\pi}} \approx 1{,}38 $.

über das Energiegleichgewicht

Bei dem Ansatz über das Energiegleichgewicht steht die kinetische Energie $ \ E_{kin} = \frac{3}{2} nkT $ nach Verwendung des Virialsatzes zur gravitativen Bindungsenergie der Gaswolke wie folgt:

$ 2 E_{\mathrm{kin}} = E_{\mathrm{grav}} $

bzw. mit n = M/µ:

$ \Leftrightarrow 3 \frac{M}{\mu}kT = \frac{3G M^2}{5R} $

Die Auflösung nach M führt zu folgender Jeans-Masse:

$ \Rightarrow M_{\mathrm{Jeans}} = \sqrt{\frac{3 \cdot 5^3}{4 \pi}} \cdot \sqrt{\frac{1}{\rho} \cdot \left(\frac{k T}{G \mu}\right)^3} $

Also ein numerischer Vorfaktor $ \alpha \approx 5{,}46 $.

Eine andere Ableitung von Jeans[2], ausgehend vom Durchmesser und Dichte der Wolke sowie der Schallgeschwindigkeit eines idealen Gases, ergibt $ \alpha \approx 6{,}27 $.

Einfluss von Dichte und Temperatur

Dichte-Temperaturdiagramm für verschiedene Jeans-Massen (M) für ein einatomiges Wasserstoffgas

Wie sich aus den Formeln ablesen lässt, ist die Jeans-Masse für kalte Gaswolken kleiner als für heiße, dafür aber bei niedrigen Gasdichten höher. Das nebenstehende Diagramm gibt diese Abhängigkeit verschiedener Jeans-Massen von der Dichte und der Temperatur wieder. Die Jeans-Masse ist als Vielfaches der Sonnenmasse angegeben, als Gas wurde einatomiges Wasserstoffgas als häufigstes Element im Universum gewählt (Masse pro Atom: µ ≈ 1,67 ⋅ 10-27 kg). Die Berechnung erfolgte wie oben ausgeführt über das Druckgleichgewicht; die Berechnung über das Energiegleichgewicht würde zu einem leicht unterschiedlichen Ergebnis führen, allerdings sind beide Ansätze stark vereinfachte Näherungen.

Ablese-Beispiel: Eine Wolke aus einatomigen Wasserstoffgas von 10 Sonnenmassen und einer Dichte von 10−17kg•m−3 kollabiert bei einer Temperatur von ≤ 10 K. Zur Veranschaulichung hätte eine solche Wolke etwa 6000 Atome pro cm3 und einen Durchmesser von 1,65 Lichtjahren (1,56 ⋅ 1013 Kilometer).

Literatur und Quellen

  • Bradley W. Carroll, Dale A. Ostlie: An introduction to Modern Astrophysics. 1996, ISBN 0-321-21030-1, S. 449.
  • Hermann Kolanoski: Einführung in die Astroteilchenphysik. Abgerufen am 21. Juli 2013 (PDF; 13,8 MB).
  • Malcolm S. Longair: Galaxy Formation. Springer, Berlin, 1998, ISBN 3-540-63785-0. (Astronomy and Astrophysics Library).
  • Roman Sexl, Hannelore Sexl: Weiße Zwerge – Schwarze Löcher. Einführung in die relativistische Astrophysik. 2. erweiterte Auflage. Vieweg Verlag, Braunschweig 1999, ISBN 3-528-17214-2. (Vieweg-Studium – Grundkurs Physik).
  • Albrecht Unsöld, Bodo Baschek: Der neue Kosmos. 4. völlig neubearbeitete Auflage. Springer, Berlin, 1988, ISBN 3-540-18171-7.

Einzelnachweise

  1. Siehe das Skript von Hermann Kolanoski, Einführung in die Astroteilchenphysik, HU Berlin, WS 2009/2010 in den Literaturangaben
  2. Siehe das Skript von Kolanoski in der Literatur

Diese Artikel könnten dir auch gefallen



Die letzten News


27.07.2021
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
26.07.2021
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
26.07.2021
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
26.07.2021
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
26.07.2021
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
26.07.2021
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
26.07.2021
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
26.07.2021
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
26.07.2021
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht. Solche Wigner-​Kristalle wurden bereits vor fast neunzig Jahren vorhergesagt, konnten aber erst jetzt direkt in einem Halbleitermaterial beobachtet werden.
26.07.2021
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.
26.07.2021
Synthese unter Laserlicht
Eine Forschungsgruppe hat neue Methode zur Bildung von protoniertem Wasserstoff entdeckt. Mit starken Laserpulsen erzeugen Physiker des attoworld-Teams am Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München erstmals protonierten Wasserstoff an Nanooberflächen.
26.07.2021
Materiestraße im All lässt Galaxienhaufen wachsen
Vor einem halben Jahr meldeten Astronomen der Universität Bonn die Entdeckung eines extrem langen intergalaktischen Gasfadens mit dem Röntgenteleskop eROSITA.
26.07.2021
Kosmischer Treffpunkt für Galaxienhaufen
Was treibt Galaxien an, oder führt zu ganzen Ansammlungen von Galaxien – sogenannte Galaxienhaufen? Obwohl kosmologische Modelle und Simulationen diese Strukturen und die Rolle, die sie spielen könnten, vorausgesagt haben, ist die Bestätigung ihrer Existenz durch die Beobachtung mit dem Röntgen-Weltraumteleskop eROSITA ziemlich neu.
28.06.2021
Quantensimulation: Messung von Verschränkung vereinfacht
Forscher haben ein Verfahren entwickelt, mit dem bisher kaum zugängliche Größen in Quantensystemen messbar gemacht werden können.
28.06.2021
Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik? Ein Forschungsteam analysierte wichtige Messungen neu. Sie fanden heraus: Ein angeblich sensationeller Effekt existiert gar nicht.
28.06.2021
Paradoxe Wellen: Gefangene Lichtteilchen auf dem Sprung
Physikern ist es gelungen, ein neuartiges Verhalten von Lichtwellen zu beobachten, bei welchem Licht durch eine neue Art von Unordnung auf kleinste Raumbereiche begrenzt wird.
28.06.2021
Isolatoren bringen Quantenbits zum Schwitzen
Schwachleitende oder nichtleitende Materialien haben Innsbrucker Physiker als wichtige Quelle für Störungen in Ionenfallen-Quantencomputern identifiziert.
23.06.2021
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
17.06.2021
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
17.06.2021
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
17.06.2021
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
17.06.2021
Entdeckung der größten Rotationsbewegung im Universum
D
13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.